Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jon Lloyd is active.

Publication


Featured researches published by Jon Lloyd.


Science | 2009

Drought sensitivity of the Amazon rainforest

Oliver L. Phillips; Luiz E. O. C. Aragão; Simon L. Lewis; Joshua B. Fisher; Jon Lloyd; Gabriela Lopez-Gonzalez; Yadvinder Malhi; Abel Monteagudo; J. Peacock; Carlos A. Quesada; Geertje M.F. van der Heijden; Samuel Almeida; Iêda Leão do Amaral; Luzmila Arroyo; Gerardo Aymard; Timothy R. Baker; Olaf Banki; Lilian Blanc; Damien Bonal; Paulo M. Brando; Jérôme Chave; Atila Alves de Oliveira; Nallaret Dávila Cardozo; Claudia I. Czimczik; Ted R. Feldpausch; Maria Aparecida Freitas; Emanuel Gloor; Niro Higuchi; Eliana M. Jimenez; Gareth Lloyd

Amazon forests are a key but poorly understood component of the global carbon cycle. If, as anticipated, they dry this century, they might accelerate climate change through carbon losses and changed surface energy balances. We used records from multiple long-term monitoring plots across Amazonia to assess forest responses to the intense 2005 drought, a possible analog of future events. Affected forest lost biomass, reversing a large long-term carbon sink, with the greatest impacts observed where the dry season was unusually intense. Relative to pre-2005 conditions, forest subjected to a 100-millimeter increase in water deficit lost 5.3 megagrams of aboveground biomass of carbon per hectare. The drought had a total biomass carbon impact of 1.2 to 1.6 petagrams (1.2 × 1015 to 1.6 × 1015 grams). Amazon forests therefore appear vulnerable to increasing moisture stress, with the potential for large carbon losses to exert feedback on climate change.


Nature | 2009

Increasing carbon storage in intact African tropical forests

Simon L. Lewis; Gabriela Lopez-Gonzalez; Bonaventure Sonké; Kofi Affum-Baffoe; Timothy R. Baker; Lucas Ojo; Oliver L. Phillips; Jan Reitsma; Lee White; James A. Comiskey; Marie‐Noël Djuikouo K; Corneille E. N. Ewango; Ted R. Feldpausch; Alan Hamilton; Manuel Gloor; Terese B. Hart; Annette Hladik; Jon Lloyd; Jon C. Lovett; Jean-Remy Makana; Yadvinder Malhi; Frank Mbago; Henry J. Ndangalasi; J. Peacock; Kelvin S.-H. Peh; Douglas Sheil; Terry Sunderland; Michael D. Swaine; James Taplin; David Taylor

The response of terrestrial vegetation to a globally changing environment is central to predictions of future levels of atmospheric carbon dioxide. The role of tropical forests is critical because they are carbon-dense and highly productive. Inventory plots across Amazonia show that old-growth forests have increased in carbon storage over recent decades, but the response of one-third of the world’s tropical forests in Africa is largely unknown owing to an absence of spatially extensive observation networks. Here we report data from a ten-country network of long-term monitoring plots in African tropical forests. We find that across 79 plots (163 ha) above-ground carbon storage in live trees increased by 0.63 Mg C ha-1 yr-1 between 1968 and 2007 (95% confidence interval (CI), 0.22–0.94; mean interval, 1987–96). Extrapolation to unmeasured forest components (live roots, small trees, necromass) and scaling to the continent implies a total increase in carbon storage in African tropical forest trees of 0.34 Pg C yr-1 (CI, 0.15–0.43). These reported changes in carbon storage are similar to those reported for Amazonian forests per unit area, providing evidence that increasing carbon storage in old-growth forests is a pan-tropical phenomenon. Indeed, combining all standardized inventory data from this study and from tropical America and Asia together yields a comparable figure of 0.49 Mg C ha-1 yr-1 (n = 156; 562 ha; CI, 0.29–0.66; mean interval, 1987–97). This indicates a carbon sink of 1.3 Pg C yr-1 (CI, 0.8–1.6) across all tropical forests during recent decades. Taxon-specific analyses of African inventory and other data suggest that widespread changes in resource availability, such as increasing atmospheric carbon dioxide concentrations, may be the cause of the increase in carbon stocks, as some theory and models predict.


Science | 2007

Weak Northern and Strong Tropical Land Carbon Uptake from Vertical Profiles of Atmospheric CO2

Britton B. Stephens; Kevin Robert Gurney; Pieter P. Tans; Colm Sweeney; Wouter Peters; Lori Bruhwiler; Philippe Ciais; Michel Ramonet; P. Bousquet; Takakiyo Nakazawa; Shuji Aoki; Toshinobu Machida; Gen Inoue; Nikolay Vinnichenko; Jon Lloyd; Armin Jordan; Martin Heimann; Olga Shibistova; R. L. Langenfelds; L. Paul Steele; R. J. Francey; A. Scott Denning

Measurements of midday vertical atmospheric CO2 distributions reveal annual-mean vertical CO2 gradients that are inconsistent with atmospheric models that estimate a large transfer of terrestrial carbon from tropical to northern latitudes. The three models that most closely reproduce the observed annual-mean vertical CO2 gradients estimate weaker northern uptake of –1.5 petagrams of carbon per year (Pg C year–1) and weaker tropical emission of +0.1 Pg C year–1 compared with previous consensus estimates of –2.4 and +1.8 Pg C year–1, respectively. This suggests that northern terrestrial uptake of industrial CO2 emissions plays a smaller role than previously thought and that, after subtracting land-use emissions, tropical ecosystems may currently be strong sinks for CO2.


Stable Isotopes and Plant Carbon-water Relations | 1993

5 – Carbon and Oxygen Isotope Effects in the Exchange of Carbon Dioxide between Terrestrial Plants and the Atmosphere

Graham D. Farquhar; Jon Lloyd

Publisher Summary This chapter discusses the effects of carbon and oxygen isotope effects in the exchange of carbon dioxide between terrestrial plants and atmosphere. Plants differ from the atmosphere in their average relative abundances of carbon isotopes. This variation arises because the kinetic parameters of chemical reactions can be affected by the atomic masses of the compounds involved. The chapter describes the processes affecting carbon isotope exchange between plants and the atmosphere. There is a significant difference between long-term isotope discrimination and short-term “on-line” measures of discrimination. The reasons for this remain to be determined, but fractionations postphotosynthesis may be involved. Oxygen isotopes are of interest to plant carbon and water relations. It is possible that the 18O /16O ratio of organic matter may be useful for determining whether differences between genotypes in δ13C and Cc/Ca are caused by differences in photosynthetic capacity or in stomatal conductance. The 18O/16O ratio in atmospheric CO2 provides an additional information about exchange between the atmosphere and water, some of which is via biological activity.


New Phytologist | 2010

Drought–mortality relationships for tropical forests

Oliver L. Phillips; Geertje M.F. van der Heijden; Simon L. Lewis; Gabriela Lopez-Gonzalez; Luiz E. O. C. Aragão; Jon Lloyd; Yadvinder Malhi; Abel Monteagudo; Samuel Almeida; Esteban Álvarez Dávila; Iêda Leão do Amaral; Sandy Andelman; Ana Andrade; Luzmila Arroyo; Gerardo Aymard; Timothy R. Baker; Lilian Blanc; Damien Bonal; Atila Alves de Oliveira; Kuo-Jung Chao; Nallaret Dávila Cardozo; Lola Da Costa; Ted R. Feldpausch; Joshua B. Fisher; Nikolaos M. Fyllas; Maria Aparecida Freitas; David Galbraith; Emanuel Gloor; Niro Higuchi; Eurídice N. Honorio

*The rich ecology of tropical forests is intimately tied to their moisture status. Multi-site syntheses can provide a macro-scale view of these linkages and their susceptibility to changing climates. Here, we report pan-tropical and regional-scale analyses of tree vulnerability to drought. *We assembled available data on tropical forest tree stem mortality before, during, and after recent drought events, from 119 monitoring plots in 10 countries concentrated in Amazonia and Borneo. *In most sites, larger trees are disproportionately at risk. At least within Amazonia, low wood density trees are also at greater risk of drought-associated mortality, independent of size. For comparable drought intensities, trees in Borneo are more vulnerable than trees in the Amazon. There is some evidence for lagged impacts of drought, with mortality rates remaining elevated 2 yr after the meteorological event is over. *These findings indicate that repeated droughts would shift the functional composition of tropical forests toward smaller, denser-wooded trees. At very high drought intensities, the linear relationship between tree mortality and moisture stress apparently breaks down, suggesting the existence of moisture stress thresholds beyond which some tropical forests would suffer catastrophic tree mortality.


Nature | 2015

Long-term decline of the Amazon carbon sink

Roel J. W. Brienen; Oliver L. Phillips; Ted R. Feldpausch; Emanuel Gloor; Timothy R. Baker; Jon Lloyd; Gabriela Lopez-Gonzalez; Abel Monteagudo-Mendoza; Yadvinder Malhi; Simon L. Lewis; R. Vásquez Martínez; Miguel Alexiades; E. Álvarez Dávila; Patricia Alvarez-Loayza; Ana Andrade; Luiz E. O. C. Aragão; Alejandro Araujo-Murakami; E.J.M.M. Arets; Luzmila Arroyo; Olaf S. Bánki; Christopher Baraloto; Jorcely Barroso; Damien Bonal; Rene G. A. Boot; José Luís C. Camargo; Carolina V. Castilho; V. Chama; Kuo-Jung Chao; Jérôme Chave; James A. Comiskey

Atmospheric carbon dioxide records indicate that the land surface has acted as a strong global carbon sink over recent decades, with a substantial fraction of this sink probably located in the tropics, particularly in the Amazon. Nevertheless, it is unclear how the terrestrial carbon sink will evolve as climate and atmospheric composition continue to change. Here we analyse the historical evolution of the biomass dynamics of the Amazon rainforest over three decades using a distributed network of 321 plots. While this analysis confirms that Amazon forests have acted as a long-term net biomass sink, we find a long-term decreasing trend of carbon accumulation. Rates of net increase in above-ground biomass declined by one-third during the past decade compared to the 1990s. This is a consequence of growth rate increases levelling off recently, while biomass mortality persistently increased throughout, leading to a shortening of carbon residence times. Potential drivers for the mortality increase include greater climate variability, and feedbacks of faster growth on mortality, resulting in shortened tree longevity. The observed decline of the Amazon sink diverges markedly from the recent increase in terrestrial carbon uptake at the global scale, and is contrary to expectations based on models.


Nature | 2014

Drought sensitivity of Amazonian carbon balance revealed by atmospheric measurements

Luciana V. Gatti; Manuel Gloor; J. B. Miller; Christopher E. Doughty; Yadvinder Malhi; Luana S. Basso; A. Martinewski; Caio S. C. Correia; V. F. Borges; Saulo R. Freitas; R. Braz; Leaha Anderson; Humberto Ribeiro da Rocha; John Grace; Oliver L. Phillips; Jon Lloyd

Feedbacks between land carbon pools and climate provide one of the largest sources of uncertainty in our predictions of global climate. Estimates of the sensitivity of the terrestrial carbon budget to climate anomalies in the tropics and the identification of the mechanisms responsible for feedback effects remain uncertain. The Amazon basin stores a vast amount of carbon, and has experienced increasingly higher temperatures and more frequent floods and droughts over the past two decades. Here we report seasonal and annual carbon balances across the Amazon basin, based on carbon dioxide and carbon monoxide measurements for the anomalously dry and wet years 2010 and 2011, respectively. We find that the Amazon basin lost 0.48 ± 0.18 petagrams of carbon per year (Pg C yr−1) during the dry year but was carbon neutral (0.06 ± 0.1 Pg C yr−1) during the wet year. Taking into account carbon losses from fire by using carbon monoxide measurements, we derived the basin net biome exchange (that is, the carbon flux between the non-burned forest and the atmosphere) revealing that during the dry year, vegetation was carbon neutral. During the wet year, vegetation was a net carbon sink of 0.25 ± 0.14 Pg C yr−1, which is roughly consistent with the mean long-term intact-forest biomass sink of 0.39 ± 0.10 Pg C yr−1 previously estimated from forest censuses. Observations from Amazonian forest plots suggest the suppression of photosynthesis during drought as the primary cause for the 2010 sink neutralization. Overall, our results suggest that moisture has an important role in determining the Amazonian carbon balance. If the recent trend of increasing precipitation extremes persists, the Amazon may become an increasing carbon source as a result of both emissions from fires and the suppression of net biome exchange by drought.


Journal of Vegetation Science | 2002

An international network to monitor the structure, composition and dynamics of Amazonian forests (RAINFOR)

Yadvinder Malhi; Oliver L. Phillips; Jon Lloyd; Timothy R. Baker; James Wright; Samuel Almeida; L. Arroyo; T. Frederiksen; John Grace; Niro Higuchi; Timothy J. Killeen; William F. Laurance; C. Leaño; Simon L. Lewis; Patrick Meir; Abel Monteagudo; David A. Neill; P. Núñez Vargas; S.N. Panfil; S. Patiño; Nigel C. A. Pitman; Carlos A. Quesada; A. Rudas-Ll.; Rafael de Paiva Salomão; Scott R. Saleska; Natalino Silva; M. Silveira; W.G. Sombroek; Renato Valencia; R. Vásquez Martínez

Abstract The Amazon basin is likely to be increasingly affected by environmental changes: higher temperatures, changes in precipitation, CO2 fertilization and habitat fragmentation. To examine the important ecological and biogeochemical consequences of these changes, we are developing an international network, RAINFOR, which aims to monitor forest biomass and dynamics across Amazonia in a co-ordinated fashion in order to understand their relationship to soil and climate. The network will focus on sample plots established by independent researchers, some providing data extending back several decades. We will also conduct rapid transect studies of poorly monitored regions. Field expeditions analysed local soil and plant properties in the first phase (2001–2002). Initial results suggest that the network has the potential to reveal much information on the continental-scale relations between forest and environment. The network will also serve as a forum for discussion between researchers, with the aim of standardising sampling techniques and methodologies that will enable Amazonian forests to be monitored in a coherent manner in the coming decades. Abbreviation: PSP = Permanent sample plot.


New Phytologist | 2013

Sensitivity of plants to changing atmospheric CO2 concentration : from the geological past to the next century

Peter J. Franks; Mark Adams; Jeffrey S. Amthor; Margaret M. Barbour; Joseph A. Berry; David S. Ellsworth; Graham D. Farquhar; Jon Lloyd; Nate G. McDowell; Richard J. Norby; David T. Tissue; Susanne von Caemmerer

The rate of CO(2) assimilation by plants is directly influenced by the concentration of CO(2) in the atmosphere, c(a). As an environmental variable, c(a) also has a unique global and historic significance. Although relatively stable and uniform in the short term, global c(a) has varied substantially on the timescale of thousands to millions of years, and currently is increasing at seemingly an unprecedented rate. This may exert profound impacts on both climate and plant function. Here we utilise extensive datasets and models to develop an integrated, multi-scale assessment of the impact of changing c(a) on plant carbon dioxide uptake and water use. We find that, overall, the sensitivity of plants to rising or falling c(a) is qualitatively similar across all scales considered. It is characterised by an adaptive feedback response that tends to maintain 1 - c(i)/c(a), the relative gradient for CO(2) diffusion into the leaf, relatively constant. This is achieved through predictable adjustments to stomatal anatomy and chloroplast biochemistry. Importantly, the long-term response to changing c(a) can be described by simple equations rooted in the formulation of more commonly studied short-term responses.


Environmental Research Letters | 2012

High sensitivity of future global warming to land carbon cycle processes

Ben B. B. Booth; Chris D. Jones; Mat Collins; Ian J. Totterdell; Peter M. Cox; Stephen Sitch; Chris Huntingford; Richard A. Betts; Glen R. Harris; Jon Lloyd

Unknowns in future global warming are usually assumed to arise from uncertainties either in the amount of anthropogenic greenhouse gas emissions or in the sensitivity of the climate to changes in greenhouse gas concentrations. Characterizing the additional uncertainty in relating CO2 emissions to atmospheric concentrations has relied on either a small number of complex models with diversity in process representations, or simple models. To date, these models indicate that the relevant carbon cycle uncertainties are smaller than the uncertainties in physical climate feedbacks and emissions. Here, for a single emissions scenario, we use a full coupled climate–carbon cycle model and a systematic method to explore uncertainties in the land carbon cycle feedback. We find a plausible range of climate–carbon cycle feedbacks significantly larger than previously estimated. Indeed the range of CO2 concentrations arising from our single emissions scenario is greater than that previously estimated across the full range of IPCC SRES emissions scenarios with carbon cycle uncertainties ignored. The sensitivity of photosynthetic metabolism to temperature emerges as the most important uncertainty. This highlights an aspect of current land carbon modelling where there are open questions about the potential role of plant acclimation to increasing temperatures. There is an urgent need for better understanding of plant photosynthetic responses to high temperature, as these responses are shown here to be key contributors to the magnitude of future change.

Collaboration


Dive into the Jon Lloyd's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elmar M. Veenendaal

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Almut Arneth

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

John Grace

University of Edinburgh

View shared research outputs
Researchain Logo
Decentralizing Knowledge