Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jon-Paul Strachan is active.

Publication


Featured researches published by Jon-Paul Strachan.


Journal of Organic Chemistry | 2000

Rational Synthesis of Meso-Substituted Chlorin Building Blocks

Jon-Paul Strachan; Donal F. O'Shea; Thiagarajan Balasubramanian; Jonathan S. Lindsey

Chlorins provide the basis for plant photosynthesis, but synthetic model systems have generally employed porphyrins as surrogates due to the unavailability of suitable chlorin building blocks. We have adapted a route pioneered by Battersby to gain access to chlorins that bear two meso substituents, a geminal dimethyl group to lock in the chlorin hydrogenation level, and no flanking meso and beta substituents. The synthesis involves convergent joining of an Eastern half and a Western half. A 3,3-dimethyl-2,3-dihydrodipyrrin (Western half) was synthesized in four steps from pyrrole-2-carboxaldehyde. A bromodipyrromethane carbinol (Eastern half) was prepared by sequential acylation and bromination of a 5-substituted dipyrromethane followed by reduction. Chlorin formation is achieved by a two-flask process of acid-catalyzed condensation followed by metal-mediated oxidative cyclization. The latter reaction has heretofore been performed with copper templates. Investigation of conditions for this multistep process led to copper-free conditions (zinc acetate, AgIO(3), and piperidine in toluene at 80 degrees C for 2 h). The zinc chlorin was obtained in yields of approximately 10% and could be easily demetalated to give the corresponding free base chlorin. The synthetic process is compatible with a range of meso substituents (p-tolyl, mesityl, pentafluorophenyl, 4-[2-(trimethylsilyl)ethynyl]phenyl, 4-iodophenyl). Altogether four free base and four zinc chlorins have been prepared. The chlorins exhibit typical absorption spectra, fluorescence spectra, and fluorescence quantum yields. The ease of synthetic access, presence of appropriate substituents, and characteristic spectral features make these types of chlorins well suited for incorporation in synthetic model systems.


Tetrahedron | 1998

Trans-Substituted porphyrin building blocks bearing iodo and ethynyl groups for applications in bioorganic and materials chemistry

Mangalampalli Ravikanth; Jon-Paul Strachan; Feirong Li; Jonathan S. Lindsey

Abstract The modular synthesis of linear or cyclic multiporphyrin arrays relies on the availability of trans -substituted porphyrin building blocks with high solubility in organic solvents. Eleven porphyrin building blocks were synthesized bearing iodo, ethynyl, and 2-(trimethylsilyl)ethynyl groups at the 4-, 3-, or 3,5-positions of two meso -aryl units, and mesityl groups at the other two meso -positions. The synthesis involves condensation of 5-mesityldipyrromethane with one or two aryl aldehydes. Combinations of functional groups include di-iodo, tetra-iodo, bis[(2-(trimethylsilyl)ethynyl], iodo and 2-(trimethylsilyl)ethynyl, and ethynyl and 2-(trimethylsilyl)ethynyl. In addition, a porphyrin bearing one 4-iodophenyl group and one 3,5-bis(boron-dipyrrin)phenyl group was synthesized for applications in molecular photonic devices. The iodo and ethynyl groups are ideally-suited for Pd-mediated coupling reactions, allowing the porphyrin building blocks to be joined in the systematic construction of soluble multiporphyrin arrays.


Journal of Medicinal Chemistry | 2012

Discovery of 3-(5-chloro-2-furoyl)-3,7-diazabicyclo[3.3.0]octane (TC-6683, AZD1446), a novel highly selective α4β2 nicotinic acetylcholine receptor agonist for the treatment of cognitive disorders.

Anatoly Mazurov; Lan Miao; Balwinder Singh Bhatti; Jon-Paul Strachan; Srinivasa Rao Akireddy; Srinivasa V. Murthy; David C. Kombo; Yun-De Xiao; Philip S. Hammond; Jenny Z. Zhang; Terry A. Hauser; Kristen G. Jordan; Craig Harrison Miller; Jason D. Speake; Gregory J. Gatto; Daniel Yohannes

Diversification of essential nicotinic cholinergic pharmacophoric elements, i.e., cationic center and hydrogen bond acceptor, resulted in the discovery of novel potent α4β2 nAChR selective agonists comprising a series of N-acyldiazabicycles. Core characteristics of the series are an exocyclic carbonyl moiety as a hydrogen bond acceptor and endocyclic secondary amino group. These features are positioned at optimal distance and with optimal relative spatial orientation to provide near optimal interactions with the receptor. A novel potent and highly selective α4β2 nAChR agonist 3-(5-chloro-2-furoyl)-3,7-diazabicyclo[3.3.0]octane (56, TC-6683, AZD1446) with favorable pharmaceutical properties and in vivo efficacy in animal models has been identified as a potential treatment for cognitive deficits associated with psychiatric or neurological conditions and is currently being progressed to phase 2 clinical trials as a treatment for Alzheimers disease.


Journal of Organic Chemistry | 2008

Synthesis of 2-(Pyridin-3-yl)-1-azabicyclo[3.2.2]nonane, 2-(Pyridin-3-yl)-1-azabicyclo[2.2.2]octane, and 2-(Pyridin-3-yl)-1-azabicyclo[3.2.1]octane, a Class of Potent Nicotinic Acetylcholine Receptor-Ligands

Balwinder Singh Bhatti; Jon-Paul Strachan; Scott R. Breining; Craig H. Miller; Persida Tahiri; Peter A. Crooks; Niranjan Madhukar Deo; Cynthia S. Day; William Scott Caldwell

In an attempt to generate nicotinic acetylcholine receptor (nAChR) ligands selective for the alpha4beta2 and alpha7 subtype receptors we designed and synthesized constrained versions of anabasine, a naturally occurring nAChR ligand. 2-(Pyridin-3-yl)-1-azabicyclo[2.2.2]octane, 2-(pyridin-3-yl)-1-azabicyclo[3.2.2]nonane, and several of their derivatives have been synthesized in both an enantioselective and a racemic manner utilizing the same basic synthetic approach. For the racemic synthesis, alkylation of N-(diphenylmethylene)-1-(pyridin-3-yl)methanamine with the appropriate bromoalkyltetrahydropyran gave intermediates which were readily elaborated into 2-(pyridin-3-yl)-1-azabicyclo[2.2.2]octane and 2-(pyridin-3-yl)-1-azabicyclo[3.2.2]nonane via a ring opening/aminocyclization sequence. An alternate synthesis of 2-(pyridin-3-yl)-1-azabicyclo[3.2.2]nonane via the alkylation of N-(1-(pyridin-3-ylethylidene)propan-2-amine has also been achieved. The enantioselective syntheses followed the same general scheme, but utilized imines derived from (+)- and (-)-2-hydroxy-3-pinanone. Chiral HPLC shows that the desired compounds were synthesized in >99.5% ee. X-ray crystallography was subsequently used to unambiguously characterize these stereochemically pure nAChR ligands. All compounds synthesized exhibited high affinity for the alpha4beta2 nAChR subtype ( K i < or = 0.5-15 nM), a subset bound with high affinity for the alpha7 receptor subtype ( K i < or = 110 nM), selectivity over the alpha3beta4 (ganglion) receptor subtype was seen within the 2-(pyridin-3-yl)-1-azabicyclo[2.2.2]octane series and for the muscle (alpha1betagammadelta) subtype in the 2-(pyridin-3-yl)-1-azabicyclo[3.2.2]nonane series.


Bioorganic & Medicinal Chemistry Letters | 2013

Pharmacological properties and predicted binding mode of arylmethylene quinuclidine-like derivatives at the α3β4 nicotinic acetylcholine receptor (nAChR).

David C. Kombo; Terry A. Hauser; Vladimir P. Grinevich; Matthew S. Melvin; Jon-Paul Strachan; Serguei S. Sidach; Joseph Chewning; Nikolai Fedorov; Kartik Tallapragada; Scott R. Breining; Craig Harrison Miller

We have carried out a pharmacological evaluation of arylmethylene quinuclidine derivatives interactions with human α3β4 nAChRs subtype, using cell-based receptor binding, calcium-influx, electrophysiological patch-clamp assays and molecular modeling techniques. We have found that the compounds bind competitively to the α3β4 receptor with micromolar affinities and some of the compounds behave as non-competitive antagonists (compounds 1, 2 and 3), displaying submicromolar IC(50) values. These evidences suggest a mixed mode of action for these compounds, having interactions at the orthosteric site and more pronounced interactions at an allosteric site to block agonist effects. One of the compounds, 1-benzyl-3-(diphenylmethylene)-1-azoniabicyclo[2.2.2]octane chloride (compound 3), exhibited poorly reversible use-dependent block of α3β4 channels. We also found that removal of a phenyl group from compound 1 confers a partial agonism to the derived analog (compound 6). Introducing a hydrogen-bond acceptor into the 3-benzylidene quinuclidine derivative (compound 7) increases agonism potency at the α3β4 receptor subtype. Docking into the orthosteric binding site of a α3β4 protein structure derived by comparative modeling accurately predicted the experimentally-observed trend in binding affinity. Results supported the notion that binding requires a hydrogen bond formation between the ligand basic nitrogen and the backbone carbonyl oxygen atom of the conserved Trp-149.


Bioorganic & Medicinal Chemistry Letters | 2013

Computational studies of novel carbonyl-containing diazabicyclic ligands interacting with α4β2 nicotinic acetylcholine receptor (nAChR) reveal alternative binding modes.

David C. Kombo; Anatoly Mazurov; Jon-Paul Strachan; Merouane Bencherif

We have carried out computational studies on interactions of diazabicyclic amide analogs with α4β2 nAChR using homology modeling, docking and pharmacophore elucidation techniques. We have found alternative ligand binding modes in most cases. All these diverse poses exhibit the quintessential hydrogen-bonding interaction between the ligand basic nitrogen and the backbone carbonyl oxygen atom of the highly conserved Trp-149. This hydrogen bond was always found to be shorter than the one contracted by the ligand carbonyl group and a second hydrogen-bond made by the cationic center with Tyr-93 of the principal face of the protein. In most of the poses observed, cation-π interactions involved three aromatic residues located in the principal face of the protein: Trp-149, Tyr-190 and Tyr-197. The latter amino acid residue appears to often donate a hydrogen-bond to the ligand carbonyl oxygen atom. We also describe two rings of alternative receptor-based hydrogen-bond donor features equidistantly separated from the carbonyl oxygen of the highly conserved Trp-149 approximately by 5 and 8Å, respectively. These findings could be exploited to design diverse and selective novel chemical libraries for the treatment of diseases and conditions where the α4β2 nAChR is disrupted, such as Alzheimer disease, Parkinsons disease and l-dopa-induced dyskinesia (LID).


European Journal of Medicinal Chemistry | 2014

Identification and pharmacological characterization of 3,6-diazabicyclo[3.1.1]heptane-3-carboxamides as novel ligands for the α4β2 and α6/α3β2β3 nicotinic acetylcholine receptors (nAChRs)

Jon-Paul Strachan; David C. Kombo; Anatoly Mazurov; Ronald Heemstra; Balwinder Singh Bhatti; Rao Akireddy; Srinivasa V. Murthy; Lan Miao; John E. Jett; Jason D. Speake; Merouane Bencherif

We have synthesized a novel series of compounds, 3,6-diazabicyclo[3.1.1]heptane-3-carboxamides, targeting both the α4β2 and α6/α3β2β3 nAChRs. Members of the obtained chemical library are partial or full agonists at both the high sensitivity (α4)2(β2)3 and α6/α3β2β3 nAChRs. 3-(Cyclopropylcarbonyl)-3,6-diazabicyclo[3.1.1]heptane (TC-8831 or compound 7 herein) demonstrated a safe in vitro pharmacological profile and the potential for reducing or preventing L-dopa-induced dyskinesias (LID) in several in vivo animal models [1-4]. In vivo metabolism studies in rat and in vitro metabolism studies in liver microsomes from human, rat, dog and monkey showed TC-8831 to be relatively stable. In vivo pharmacokinetic analysis in the rat confirmed brain penetration, with an average brain:plasma ratio of approximately 0.3 across time points from 0.5 to 4 h. Docking into homology models predicted alternative binding modes for TC-8831 and highlighted the importance of the cationic center, hydrogen-bond acceptor, and hydrophobic aliphatic features in promoting binding affinity to both nAChRs. Pharmacophore elucidation confirmed the importance of these key interactions. QSAR modeling suggested that binding affinity is primarily driven by ligand shape, relative positive charge distribution onto the molecular surface, and molecular flexibility. Of the two subtypes, ligand binding to α6β2β3 appears to be more sensitive to bulkiness and flexibility.


Journal of the American Chemical Society | 1997

EFFECTS OF ORBITAL ORDERING ON ELECTRONIC COMMUNICATION IN MULTIPORPHYRIN ARRAYS

Jon-Paul Strachan; Steve Gentemann; Jyoti Seth; William A. Kalsbeck; Jonathan S. Lindsey; Dewey Holten, ,‡ and; David F. Bocian


Journal of Porphyrins and Phthalocyanines | 1999

Ground and excited state electronic properties of halogenated tetraarylporphyrins. Tuning the building blocks for porphyrin-based photonic devices

Sung Ik Yang; Jyoti Seth; Jon-Paul Strachan; Steve Gentemann; Dongho Kim; Dewey Holten; Jonathan S. Lindsey; David F. Bocian


Inorganic Chemistry | 1998

Synthesis and Characterization of Tetrachlorodiarylethyne-Linked Porphyrin Dimers. Effects of Linker Architecture on Intradimer Electronic Communication.

Jon-Paul Strachan; Steve Gentemann; Jyoti Seth; William A. Kalsbeck; Jonathan S. Lindsey; Dewey Holten; David F. Bocian

Collaboration


Dive into the Jon-Paul Strachan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anatoly Mazurov

National Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jonathan S. Lindsey

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Scott R. Breining

Worcester Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jyoti Seth

University of California

View shared research outputs
Top Co-Authors

Avatar

Steve Gentemann

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge