Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jon Skorve is active.

Publication


Featured researches published by Jon Skorve.


Journal of Obesity | 2011

Different Adipose Depots: Their Role in the Development of Metabolic Syndrome and Mitochondrial Response to Hypolipidemic Agents

Bodil Bjørndal; Lena Burri; Vidar Staalesen; Jon Skorve; Rolf K. Berge

Adipose tissue metabolism is closely linked to insulin resistance, and differential fat distributions are associated with disorders like hypertension, diabetes, and cardiovascular disease. Adipose tissues vary in their impact on metabolic risk due to diverse gene expression profiles, leading to differences in lipolysis and in the production and release of adipokines and cytokines, thereby affecting the function of other tissues. In this paper, the roles of the various adipose tissues in obesity are summarized, with particular focus on mitochondrial function. In addition, we discuss how a functionally mitochondrial-targeted compound, the modified fatty acid tetradecylthioacetic acid (TTA), can influence mitochondrial function and decrease the size of specific fat depots.


Lipids | 1993

The hypotriglyceridemic effect of eicosapentaenoic acid in rats is reflected in increased mitochondrial fatty acid oxidation followed by diminished lipogenesis.

Nina Willumsen; Jon Skorve; Sofie Hexeberg; Arild C. Rustan; Rolf K. Berge

The effect of eicosapentaenoic acid (EPA) on fatty acid oxidation and on key enzymes of triglyceride metabolism and lipogenesis was investigated in the liver of rats. Repeated administration of EPA to normolipidemic rats resulted in a time-dependent decrease in plasma triglycerides, phospholipids and cholesterol. The triglyceride-lowering effect was observed after one day of feeding whereas lowering of plasma cholesterol and phospholipids was observed after five days of treatment. The triglyceride content of liver was reduced after two-day treatment. At that time, increased mitochondrial fatty acid oxidation occurred whereas mitochondrial and microsomal glycerophosphate acyltransferase was inhibited. The phosphatidate phosphohydrolase activity was unchanged. Adenosine triphosphate:citrate lyase, acetyl-CoA carboxylase, fatty acid synthetase and glucose-6-phosphate dehydrogenase were inhibited during the 15 d of EPA treatment whereas peroxisomal β-oxidation was increased. At one day of feeding, however, when the hypotriglyceridemic effect was established, the lipogenic enzyme activities were reduced to the same extent in palmitic acid-treated animals as in EPA-treated rats. In cultured rat hepatocytes, the oxidation of [14C]palmitic acid to carbon dioxide and acid-soluble products was stimulated in the presence of EPA. These results suggest that the instant hypolipidemia in rats given EPA could be explained at least in part by a sudden increase in mitochondrial fatty acid oxidation, thereby reducing the availability of fatty acids for lipid synthesis in the liver for export,e.g., in the form of very low density lipoproteins, even before EPA induced peroxisomal fatty acid oxidation, reduced triglyceride biosynthesis and diminished lipogenesis.


Current Opinion in Lipidology | 2002

Metabolic effects of thia fatty acids.

Rolf K. Berge; Jon Skorve; Karl Johan Tronstad; Kjetil Berge; Oddrun Anita Gudbrandsen; Hans J. Grav

Thia substituted fatty acids are saturated fatty acids which are modified by insertion of a sulfur atom at specific positions in the carbon backbone. During the last few years pleiotropic effects of the 3-thia fatty acid tetradecylthioacetic acid have been revealed. The biological responses to tetradecylthioacetic acid include mitochondrial proliferation, increased catabolism of fatty acids, antiadiposity, improvement in insulin sensitivity, antioxidant properties, reduced proliferation and induction of apoptosis in rapidly proliferating cells, cell differentiation and antiinflammatory action. These biological responses indicate that tetradecylthioacetic acid changes the plasma profile from atherogenic to cardioprotective. As a pan-peroxisome proliferator-activated receptor ligand, tetradecylthioacetic acid regulates the adipose tissue mass and the expression of lipid metabolizing enzymes, particularly those involved in catabolic pathways. In contrast, circumstantial evidences suggest that peroxisome proliferator-activated receptor-independent metabolic pathways may be of importance for the antioxidant, antiproliferative and antiinflammatory action of tetradecylthioacetic acid.


Biochimica et Biophysica Acta | 1993

Early effects on mitochondrial and peroxisomal β-oxidation by the hypolipidemic 3-thia fatty acids in rat livers

Daniel K. Asiedu; Jon Skorve; Nina Willumsen; Abraham Demoz; Rolf K. Berge

A single administration of 3-thiadicarboxylic and tetradecylthioacetic acids stimulates both mitochondrial and peroxisomal beta-oxidation and lowers plasma triacylglycerol levels. An increased rate of mitochondrial beta-oxidation and carnitine palmitoyl-transferase activity was established after 3 h and this was accompanied by a lowering of plasma triacylglycerol. Peroxisomal beta-oxidation, however, remained unchanged up to 8 h and was significantly increased after 12 h. These results suggest that after a single administration of 3-thia fatty acids mitochondrial beta-oxidation precedes peroxisomal beta-oxidation. Furthermore, they show that the observed tricylglycerol-lowering effect, which is established early (3-4 h) after the administration of 3-thia fatty acids, is initially due to an increased mitochondrial beta-oxidation.


Nutrition & Metabolism | 2014

Fish oil and krill oil supplementations differentially regulate lipid catabolic and synthetic pathways in mice.

Veronika Tillander; Bodil Bjørndal; Lena Burri; Pavol Bohov; Jon Skorve; Rolf K. Berge; Stefan E. H. Alexson

BackgroundMarine derived oils are rich in long-chain polyunsaturated omega-3 fatty acids, in particular eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which have long been associated with health promoting effects such as reduced plasma lipid levels and anti-inflammatory effects. Krill oil (KO) is a novel marine oil on the market and is also rich in EPA and DHA, but the fatty acids are incorporated mainly into phospholipids (PLs) rather than triacylglycerols (TAG). This study compares the effects of fish oil (FO) and KO on gene regulation that influences plasma and liver lipids in a high fat diet mouse model.MethodsMale C57BL/6J mice were fed either a high-fat diet (HF) containing 24% (wt/wt) fat (21.3% lard and 2.3% soy oil), or the HF diet supplemented with FO (15.7% lard, 2.3% soy oil and 5.8% FO) or KO (15.6% lard, 2.3% soy oil and 5.7% KO) for 6 weeks. Total levels of cholesterol, TAG, PLs, and fatty acid composition were measured in plasma and liver. Gene regulation was investigated using quantitative PCR in liver and intestinal epithelium.ResultsPlasma cholesterol (esterified and unesterified), TAG and PLs were significantly decreased with FO. Analysis of the plasma lipoprotein particles indicated that the lipid lowering effect by FO is at least in part due to decreased very low density lipoprotein (VLDL) content in plasma with subsequent liver lipid accumulation. KO lowered plasma non-esterified fatty acids (NEFA) with a minor effect on fatty acid accumulation in the liver. In spite of a lower omega-3 fatty acid content in the KO supplemented diet, plasma and liver PLs omega-3 levels were similar in the two groups, indicating a higher bioavailability of omega-3 fatty acids from KO. KO more efficiently decreased arachidonic acid and its elongation/desaturation products in plasma and liver. FO mainly increased the expression of several genes involved in fatty acid metabolism, while KO specifically decreased the expression of genes involved in the early steps of isoprenoid/cholesterol and lipid synthesis.ConclusionsThe data show that both FO and KO promote lowering of plasma lipids and regulate lipid homeostasis, but with different efficiency and partially via different mechanisms.


Biochimica et Biophysica Acta | 1990

Fatty acid metabolism in liver of rats treated with hypolipidemic sulphur-substituted fatty acid analogues

Daniel K. Asiedu; Asle Aarsland; Jon Skorve; Asbjørn Svardal; Rolf K. Berge

The purpose of this study was to investigate early biochemical changes and possible mechanisms via which alkyl(C12)thioacetic acid (CMTTD, blocked for beta-oxidation), alkyl(C12)thiopropionic acid (CETTD, undergo one cycle of beta-oxidation) and a 3-thiadicarboxylic acid (BCMTD, blocked for both omega- (and beta-oxidation) influence the peroxisomal beta-oxidation in liver of rats. Treatment of rats with CMTTD caused a stimulation of the palmitoyl-CoA synthetase activity accompanied with increased concentration of hepatic acid-insoluble CoA. This effect was already established during 12-24 h of feeding. From 2 days of feeding, the cellular level of acid-insoluble CoA began to decrease, whereas free CoASH content increased. Stimulation of [1-14C]palmitoyl-CoA oxidation in the presence of KCN, palmitoyl-CoA-dependent dehydrogenase (termed peroxisomal beta-oxidation) and palmitoyl-CoA hydrolase activities were revealed after 36-48 h of CMTTD-feeding. Administration of BCMTD affected the enzymatic activities and altered the distribution of CoA between acid-insoluble and free forms comparable to what was observed in CMTTD-treated rats. It is evident that treatment of peroxisome proliferators (BCMTD and CMTTD), the level of acyl-CoA esters and the enzyme activity involved in their formation precede the increase in peroxisomal and palmitoyl-CoA hydrolase activities. In CMTTD-fed animals the activity of cyanide-insensitive fatty acid oxidation remained unchanged when the mitochondrial beta-oxidation and carnitine palmitoyltransferase operated at maximum rates. The sequence and redistribution of CoA and enzyme changes were interpreted as support for the hypothesis that substrate supply is an important factor in the regulation of peroxisomal fatty acid metabolism, i.e., the fatty acyl-CoA species appear to be catabolized by peroxisomes at high rates only when uptake into mitochondria is saturated. Administration of CETTD led to an inhibition of mitochondrial fatty acid oxidation accompanied with a rise in the concentration of acyl-CoA esters in the liver. Consequently, fatty liver developed. The peroxisomal beta-oxidation was marginally affected. Whether inhibition of mitochondrial beta-oxidation may be involved in regulation of peroxisomal fatty acid metabolism and in development of fatty liver should be considered.


European Journal of Clinical Investigation | 2004

Lipid-lowering and anti-inflammatory effects of tetradecylthioacetic acid in HIV-infected patients on highly active antiretroviral therapy.

J. Fredriksen; Thor Ueland; Endre Dyrøy; B. Halvorsen; K. Melby; L. Melbye; Bjørn Steen Skålhegg; Pavol Bohov; Jon Skorve; Rolf K. Berge; P. Aukrust; Stig S. Frøland

Background  Highly active antiretroviral therapy (HAART) often leads to a dramatic improvement in clinical, viral and immunologic parameters in HIV‐infected individuals. However, the emergence of long‐term side‐effects of HAART and in particular dylipidaemia is increasingly reported. Based on the potential lipid‐lowering and immunomodulatory properties of tetradecylthioacetic acid (TTA) we examined whether TTA in combination with dietary intervention could modify lipid levels in peripheral blood in HIV‐infected patients on HAART.


Diabetes, Obesity and Metabolism | 2009

Tetradecylthioacetic acid attenuates dyslipidaemia in male patients with type 2 diabetes mellitus, possibly by dual PPAR‐α/δ activation and increased mitochondrial fatty acid oxidation

K. Løvås; Therese H. Røst; Jon Skorve; R. J. Ulvik; Oddrun Anita Gudbrandsen; Pavol Bohov; Andreas J. Wensaas; Arild C. Rustan; Rolf K. Berge; E. S. Husebye

Aim:  We previously demonstrated that a modified fatty acid, tetradecylthioacetic acid (TTA), improves transport and utilization of lipids and increases mitochondrial fatty acid oxidation in animal and cell studies. We conducted an exploratory study of safety and effects of this novel drug in patients with type 2 diabetes mellitus and investigated the mechanism of action in human cell lines.


Biochemical Pharmacology | 2002

Inhibition of rat lipoprotein oxidation after tetradecylthioacetic acid feeding

Ziad A. Muna; Oddrun Anita Gudbrandsen; Hege Wergedahl; Pavol Bohov; Jon Skorve; Rolf K. Berge

We have previously shown that tetradecylthioacetic acid (TTA), a sulfur containing saturated fatty acid analogue, inhibits the oxidative modification of human low-density lipoprotein (LDL) in vitro. The oxidative modification of LDL is believed to be a crucial step in the progression of atherosclerosis. In the present study, we investigated the effect of TTA oral administration on the susceptibility of rat lipoprotein to undergo oxidative modification ex vivo. Lipoprotein resistance to copper-induced oxidation was highly improved after TTA administration to rats. Conjugated dienes produced after 150 min of lipoprotein oxidation were dramatically lowered in the TTA treated rats compared to controls. Malondialdehyde and lipid peroxides production by oxidation was highly limited. These effects were independent of any Vitamin E effects. More than 50% relative reduction in polyunsaturated fatty acids of the n-3 family, and more than 30% relative increase in 18:1n-9 fatty acid in the triacylglycerol (TAG)-rich lipoprotein were observed. TAG-rich lipoprotein lipids of TTA fed rats were decreased with more than 50% reduction in TAG. The data reported in this paper indicate a potent in vivo antioxidant capability of TTA that beside its hypolipidemic effect might be of importance in relation to the development of atherosclerosis.


British Journal of Nutrition | 2009

Trans-10, cis-12-conjugated linoleic acid reduces the hepatic triacylglycerol content and the leptin mRNA level in adipose tissue in obese Zucker fa/fa rats

Oddrun Anita Gudbrandsen; Enrique Rodríguez; Hege Wergedahl; Sverre Mørk; Janne E. Reseland; Jon Skorve; Andreu Palou; Rolf K. Berge

Conjugated linoleic acid (CLA) isomers have been reported to reduce body weight and beneficially affect glucose metabolism in animals, but the results are inconsistent and seem to depend on animal model and type of CLA isomer. In the present study, feeding male Zucker fa/fa rats diets supplemented with 1% trans-10, cis-12-CLA for 10 d reduced the liver TAG content without improving the overall adiposity, and enhanced hepatic mitochondrial and peroxisomal beta-oxidation. The increased carnitine palmitoyltransferase (CPT)-I activity and mRNA level as well as the increased n-3:n-6 PUFA ratio in liver suggest that trans-10, cis-12-CLA increased the hepatic beta-oxidation by stimulation of PPARalpha. The reduced hepatic TAG content may be partly due to lower activity of stearoyl-CoA desaturase, as the ratios of 18 : 1n-9:18 : 0 and 16 : 1n-7:16 : 0 were reduced in liver. Trans-10, cis-12-CLA increased the CPT-I mRNA in retroperitoneal white adipose tissue (WAT), and increased uncoupling protein-2 mRNA in epididymal and inguinal WAT depots. Leptin mRNA level was decreased in all examined WAT depots, implying reduced insulin sensitivity. The resistin mRNA level was increased in all WAT depots, whereas adiponectin mRNA was reduced in inguinal and retroperitoneal WAT. The present results suggest that dietary supplementation with trans-10, cis-12-CLA may increase the catabolism of lipids in liver and adipose tissue. Moreover, we provide new data suggesting that trans-10, cis-12-CLA modulates the expression of resistin and adiponectin inversely in adipose tissue. Hence, the present results suggest that trans-10, cis-12-CLA may have some beneficial effects on lipid metabolism and adiposity but possibly reduces insulin sensitivity.

Collaboration


Dive into the Jon Skorve's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rita Vik

University of Bergen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ottar Nygård

Haukeland University Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge