Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jon Sorenson is active.

Publication


Featured researches published by Jon Sorenson.


Science | 2009

Real-Time DNA Sequencing from Single Polymerase Molecules

John Eid; Adrian Fehr; Jeremy Gray; Khai Luong; John Lyle; Geoff Otto; Paul Peluso; David Rank; Primo Baybayan; Brad Bettman; Arkadiusz Bibillo; Keith Bjornson; Bidhan Chaudhuri; Frederick Christians; Ronald L. Cicero; Sonya Clark; Ravindra Dalal; Alex deWinter; John Dixon; Mathieu Foquet; Alfred Gaertner; Paul Hardenbol; Cheryl Heiner; Kevin Hester; David Holden; Gregory Kearns; Xiangxu Kong; Ronald Kuse; Yves Lacroix; Steven Lin

We present single-molecule, real-time sequencing data obtained from a DNA polymerase performing uninterrupted template-directed synthesis using four distinguishable fluorescently labeled deoxyribonucleoside triphosphates (dNTPs). We detected the temporal order of their enzymatic incorporation into a growing DNA strand with zero-mode waveguide nanostructure arrays, which provide optical observation volume confinement and enable parallel, simultaneous detection of thousands of single-molecule sequencing reactions. Conjugation of fluorophores to the terminal phosphate moiety of the dNTPs allows continuous observation of DNA synthesis over thousands of bases without steric hindrance. The data report directly on polymerase dynamics, revealing distinct polymerization states and pause sites corresponding to DNA secondary structure. Sequence data were aligned with the known reference sequence to assay biophysical parameters of polymerization for each template position. Consensus sequences were generated from the single-molecule reads at 15-fold coverage, showing a median accuracy of 99.3%, with no systematic error beyond fluorophore-dependent error rates.


The New England Journal of Medicine | 2011

The Origin of the Haitian Cholera Outbreak Strain

Chen Shan Chin; Jon Sorenson; Jason B. Harris; William P. Robins; Richelle C. Charles; Roger R. Jean-Charles; James Bullard; Dale Webster; Andrew Kasarskis; Paul Peluso; Ellen E. Paxinos; Yoshiharu Yamaichi; Stephen B. Calderwood; John J. Mekalanos; Eric E. Schadt; Matthew K. Waldor

BACKGROUND Although cholera has been present in Latin America since 1991, it had not been epidemic in Haiti for at least 100 years. Recently, however, there has been a severe outbreak of cholera in Haiti. METHODS We used third-generation single-molecule real-time DNA sequencing to determine the genome sequences of 2 clinical Vibrio cholerae isolates from the current outbreak in Haiti, 1 strain that caused cholera in Latin America in 1991, and 2 strains isolated in South Asia in 2002 and 2008. Using primary sequence data, we compared the genomes of these 5 strains and a set of previously obtained partial genomic sequences of 23 diverse strains of V. cholerae to assess the likely origin of the cholera outbreak in Haiti. RESULTS Both single-nucleotide variations and the presence and structure of hypervariable chromosomal elements indicate that there is a close relationship between the Haitian isolates and variant V. cholerae El Tor O1 strains isolated in Bangladesh in 2002 and 2008. In contrast, analysis of genomic variation of the Haitian isolates reveals a more distant relationship with circulating South American isolates. CONCLUSIONS The Haitian epidemic is probably the result of the introduction, through human activity, of a V. cholerae strain from a distant geographic source. (Funded by the National Institute of Allergy and Infectious Diseases and the Howard Hughes Medical Institute.).


Nature Reviews Genetics | 2010

Computational solutions to large-scale data management and analysis

Eric E. Schadt; Michael D. Linderman; Jon Sorenson; Lawrence Lee; Garry P. Nolan

Today we can generate hundreds of gigabases of DNA and RNA sequencing data in a week for less than US


Nature Biotechnology | 2012

A hybrid approach for the automated finishing of bacterial genomes

Ali Bashir; Aaron Klammer; William P. Robins; Chen Shan Chin; Dale Webster; Ellen E. Paxinos; David Hsu; Meredith Ashby; Susana Wang; Paul Peluso; Robert Sebra; Jon Sorenson; James Bullard; Jackie Yen; Marie Valdovino; Emilia Mollova; Khai Luong; Steven Lin; Brianna Lamay; Amruta Joshi; Lori A. Rowe; Michael Frace; Cheryl L. Tarr; Maryann Turnsek; Brigid M. Davis; Andrew Kasarskis; John J. Mekalanos; Matthew K. Waldor; Eric E. Schadt

5,000. The astonishing rate of data generation by these low-cost, high-throughput technologies in genomics is being matched by that of other technologies, such as real-time imaging and mass spectrometry-based flow cytometry. Success in the life sciences will depend on our ability to properly interpret the large-scale, high-dimensional data sets that are generated by these technologies, which in turn requires us to adopt advances in informatics. Here we discuss how we can master the different types of computational environments that exist — such as cloud and heterogeneous computing — to successfully tackle our big data problems.


Nature Reviews Genetics | 2011

Cloud and heterogeneous computing solutions exist today for the emerging big data problems in biology

Eric E. Schadt; Michael D. Linderman; Jon Sorenson; Lawrence Lee; Garry P. Nolan

Advances in DNA sequencing technology have improved our ability to characterize most genomic diversity. However, accurate resolution of large structural events is challenging because of the short read lengths of second-generation technologies. Third-generation sequencing technologies, which can yield longer multikilobase reads, have the potential to address limitations associated with genome assembly. Here we combine sequencing data from second- and third-generation DNA sequencing technologies to assemble the two-chromosome genome of a recent Haitian cholera outbreak strain into two nearly finished contigs at >99.9% accuracy. Complex regions with clinically relevant structure were completely resolved. In separate control assemblies on experimental and simulated data for the canonical N16961 cholera reference strain, we obtained 14 scaffolds of greater than 1 kb for the experimental data and 8 scaffolds of greater than 1 kb for the simulated data, which allowed us to correct several errors in contigs assembled from the short-read data alone. This work provides a blueprint for the next generation of rapid microbial identification and full-genome assembly.


Archive | 2010

Nanopore sequencing devices and methods

Stephen Turner; Benjamin Flusberg; Mathieu Foquet; Hans Callebaut; Robert Sebra; Bidhan Chaudhuri; Jon Sorenson; Keith Bjornson; Adrian Fehr; Jonas Korlach; Robin Emig

Cloud and heterogeneous computing solutions exist today for the emerging big data problems in biology


Archive | 2009

Classification of nucleic acid templates

Benjamin Flusberg; Jonas Korlach; Jeffrey Wegener; Tyson A. Clark; Igor Vilfan; Andrey Kislyuk; Stephen Turner; Jon Sorenson; Kevin Travers; Cheryl Heiner; Austin B. Tomaney; Patrick Marks; Jessica Lee; Lei Jia; Dale Webster; John Lyle; Jeremiah Hanes; Joseph Puglisi


Archive | 2011

Sequence assembly and consensus sequence determination

Aaron Klammer; Susan Tang; Mark Chaisson; Jon Sorenson; Chen-Shan Chin


Archive | 2009

Intermittent detection during analytical reactions

Kenneth Mark Maxham; Jon Sorenson; John Eid; Patrick Marks; Kevin Travers; Donald Gray; Robin Emig; Mark Chaisson; Benjamin Flusberg


Archive | 2012

Algorithms for sequence determination

Jon Sorenson; Susan Tang; Patrick Marks; Chen-Shan Chin

Collaboration


Dive into the Jon Sorenson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge