Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jon V. Busto is active.

Publication


Featured researches published by Jon V. Busto.


FEBS Letters | 2008

Cholesterol displacement by ceramide in sphingomyelin‐containing liquid‐ordered domains, and generation of gel regions in giant lipidic vesicles

Jesús Sot; Maitane Ibarguren; Jon V. Busto; L.-Ruth Montes; Félix M. Goñi; Alicia Alonso

Fluorescence confocal microscopy and differential scanning calorimetry are used in combination to study the phase behaviour of bilayers composed of PC:PE:SM:Chol equimolecular mixtures, in the presence or absence of 10 mol% egg ceramide. In the absence of ceramide, separate liquid‐ordered and liquid‐disordered domains are observed in giant unilamellar vesicles. In the presence of ceramide, gel‐like domains appear within the liquid‐ordered regions. The melting properties of these gel‐like domains resemble those of SM:ceramide binary mixtures, suggesting Chol displacement by ceramide from SM:Chol‐rich liquid‐ordered regions. Thus three kinds of domains coexist within a single vesicle in the presence of ceramide: gel, liquid‐ordered, and liquid‐disordered. In contrast, when 10 mol% egg diacylglycerol is added instead of ceramide, homogeneous vesicles, consisting only of liquid‐disordered bilayers, are observed.


Biophysical Journal | 2009

Coexistence of Immiscible Mixtures of Palmitoylsphingomyelin and Palmitoylceramide in Monolayers and Bilayers

Jon V. Busto; Maria Laura Fanani; Luisina De Tullio; Jesús Sot; Bruno Maggio; Félix M. Goñi; Alicia Alonso

A combination of lipid monolayer- and bilayer-based model systems has been applied to explore in detail the interactions between and organization of palmitoylsphingomyelin (pSM) and the related lipid palmitoylceramide (pCer). Langmuir balance measurements of the binary mixture reveal favorable interactions between the lipid molecules. A thermodynamically stable point is observed in the range approximately 30-40 mol % pCer. The pSM monolayer undergoes hyperpolarization and condensation with small concentrations of pCer, narrowing the liquid-expanded (LE) to liquid-condensed (LC) pSM main phase transition by inducing intermolecular interactions and chain ordering. Beyond this point, the phase diagram no longer reveals the presence of the pSM-enriched phase. Differential scanning calorimetry (DSC) of multilamellar vesicles reveals a widening of the pSM main gel-fluid phase transition (41 degrees C) upon pCer incorporation, with formation of a further endotherm at higher temperatures that can be deconvoluted into two components. DSC data reflect the presence of pCer-enriched domains coexisting, in different proportions, with a pSM-enriched phase. The pSM-enriched phase is no longer detected in DSC thermograms containing >30 mol % pCer. Direct domain visualization has been carried out by fluorescence techniques on both lipid model systems. Epifluorescence microscopy of mixed monolayers at low pCer content shows concentration-dependent, morphologically different pCer-enriched LC domain formation over a pSM-enriched LE phase, in which pCer content close to 5 and 30 mol % can be determined for the LE and LC phases, respectively. In addition, fluorescence confocal microscopy of giant vesicles further confirms the formation of segregated pCer-enriched lipid domains. Vesicles cannot form at >40 mol % pCer content. Altogether, the presence of at least two immiscible phase-segregated pSM-pCer mixtures of different compositions is proposed at high pSM content. A condensed phase (with domains segregated from the liquid-expanded phase) showing enhanced thermodynamic stability occurs near a compositional ratio of 2:1 (pSM/pCer). These observations become significant on the basis of the ceramide-induced microdomain aggregation and platform formation upon sphingomyelinase enzymatic activity on cellular membranes.


Biophysical Journal | 2012

Binding of β-amyloid (1-42) peptide to negatively charged phospholipid membranes in the liquid-ordered state: modeling and experimental studies.

Hasna Ahyayauch; Michal Raab; Jon V. Busto; Nagore Andraka; José-Luis R. Arrondo; Massimo Masserini; Igor Tvaroška; Félix M. Goñi

To explore the initial stages of amyloid β peptide (Aβ42) deposition on membranes, we have studied the interaction of Aβ42 in the monomeric form with lipid monolayers and with bilayers in either the liquid-disordered or the liquid-ordered (L(o)) state, containing negatively charged phospholipids. Molecular dynamics (MD) simulations of the system have been performed, as well as experimental measurements. For bilayers in the L(o) state, in the absence of the negatively charged lipids, interaction is weak and it cannot be detected by isothermal calorimetry. However, in the presence of phosphatidic acid, or of cardiolipin, interaction is detected by different methods and in all cases interaction is strongest with lower (2.5-5 mol%) than higher (10-20 mol%) proportions of negatively charged phospholipids. Liquid-disordered bilayers consistently allowed a higher Aβ42 binding than L(o) ones. Thioflavin T assays and infrared spectroscopy confirmed a higher proportion of β-sheet formation under conditions when higher peptide binding was measured. The experimental results were supported by MD simulations. We used 100 ns MD to examine interactions between Aβ42 and three different 512 lipid bilayers consisting of palmitoylsphingomyelin, dimyristoyl phosphatidic acid, and cholesterol in three different proportions. MD pictures are different for the low- and high-charge bilayers, in the former case the peptide is bound through many contact points to the bilayer, whereas for the bilayer containing 20 mol% anionic phospholipid only a small fragment of the peptide appears to be bound. The MD results indicate that the binding and fibril formation on the membrane surface depends on the composition of the bilayer, and is the result of a subtle balance of many inter- and intramolecular interactions between the Aβ42 and membrane.


Biophysical Journal | 2010

Cholesterol Displaces Palmitoylceramide from Its Tight Packing with Palmitoylsphingomyelin in the Absence of a Liquid-Disordered Phase

Jon V. Busto; Jesús Sot; José Requejo-Isidro; Félix M. Goñi; Alicia Alonso

A set of different biophysical approaches has been used to explore the phase behavior of palmitoylsphingomyelin (pSM)/cholesterol (Chol) model membranes in the presence and absence of palmitoylceramide (pCer). Fluorescence spectroscopy of di-4-ANEPPDHQ-stained pSM/Chol vesicles and atomic force microscopy of supported planar bilayers show gel L(beta)/liquid-ordered (L(o)) phase coexistence within the range X(Chol) = 0-0.25 at 22 degrees C. At the latter compositional point and beyond, a single L(o) pSM/Chol phase is detected. In ternary pSM/Chol/pCer mixtures, differential scanning calorimetry of multilamellar vesicles and confocal fluorescence microscopy of giant unilamellar vesicles concur in showing immiscibility, but no displacement, between L(o) cholesterol-enriched (pSM/Chol) and gel-like ceramide-enriched (pSM/pCer) phases at high pSM/(Chol + pCer) ratios. At higher cholesterol content, pCer is unable to displace cholesterol at any extent, even at X(Chol) < 0.25. It is interesting that an opposite strong cholesterol-mediated pCer displacement from its tight packing with pSM is clearly detected, completely abolishing the pCer ability to generate large microdomains and giving rise instead to a single ternary phase. These observations in model membranes in the absence of the lipids commonly used to form a liquid-disordered phase support the role of cholesterol as the key determinant in controlling its own displacement from L(o) domains by ceramide upon sphingomyelinase activity.


Journal of Chemical Biology | 2008

Combination of the anti-tumour cell ether lipid edelfosine with sterols abolishes haemolytic side effects of the drug

Jon V. Busto; Esther del Canto-Jañez; Félix M. Goñi; Faustino Mollinedo; Alicia Alonso

Edelfosine (1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine) is an anti-tumour cell ether lipid with surface-active properties. Pure edelfosine can be dispersed in aqueous media in the form of micelles. One important, negative side effect of edelfosine is that it is highly haemolytic. In this paper, we show that edelfosine can be co-dispersed in water with certain lipids (particularly cholesterol, campesterol or β-sitosterol) so that it gives rise to liposomes. Surface pressure measurements demonstrate that edelfosine is slowly released from these liposomes. In liposomal form, edelfosine remains apoptogenic for a variety of leukemia cell lines, while its haemolytic effect is abolished. The phenomenon is explained on the basis of the complementarity of the molecular geometries of sterols and edelfosine.


Biophysical Journal | 2014

Lamellar Gel (Lβ) Phases of Ternary Lipid Composition Containing Ceramide and Cholesterol

Jon V. Busto; Aritz B. García-Arribas; Jesús Sot; Alejandro Torrecillas; Juan C. Gómez-Fernández; Félix M. Goñi; Alicia Alonso

Lipid lateral segregation into specific domains in cellular membranes is associated with cell signaling and metabolic regulation. This phenomenon partially arises as a consequence of the very distinct bilayer-associated lipid physico-chemical properties that give rise to defined phase states at a given temperature. Until now lamellar gel (Lβ) phases have been described in detail in single or two-lipid systems. Using x-ray scattering, differential scanning calorimetry, confocal fluorescence microscopy, and atomic force microscopy, we have characterized phases of ternary lipid compositions in the presence of saturated phospholipids, cholesterol, and palmitoyl ceramide mixtures. These phases stabilized by direct cholesterol-ceramide interaction can exist either with palmitoyl sphingomyelin or with dipalmitoyl phosphatidylcholine and present intermediate properties between raft-associated phospholipid-cholesterol liquid-ordered and phospholipid-ceramide Lβ phases. The present data provide novel, to our knowledge, evidence of a chemically defined, multicomponent lipid system that could cooperate in building heterogeneous segregated platforms in cell membranes.


Biophysical Journal | 2014

N-Nervonoylsphingomyelin (C24:1) Prevents Lateral Heterogeneity in Cholesterol-Containing Membranes

Sabina M. Maté; Jon V. Busto; Aritz B. García-Arribas; Jesús Sot; Romina Vazquez; Vanesa Herlax; Claude Wolf; Laura Bakás; Félix M. Goñi

This study was conducted to explore how the nature of the acyl chains of sphingomyelin (SM) influence its lateral distribution in the ternary lipid mixture SM/cholesterol/1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), focusing on the importance of the hydrophobic part of the SM molecule for domain formation. Atomic force microscopy (AFM) measurements showed that the presence of a double bond in the 24:1 SM molecule in mixtures with cholesterol (CHO) or in pure bilayers led to a decrease in the molecular packing. Confocal microscopy and AFM showed, at the meso- and nanoscales respectively, that unlike 16:0 and 24:0 SM, 24:1 SM does not induce phase segregation in ternary lipid mixtures with DOPC and CHO. This ternary lipid mixture had a nanomechanical stability intermediate between those displayed by liquid-ordered (Lo) and liquid-disordered (Ld) phases, as reported by AFM force spectroscopy measurements, demonstrating that 24:1 SM is able to accommodate both DOPC and CHO, forming a single phase. Confocal experiments on giant unilamellar vesicles made of human, sheep, and rabbit erythrocyte ghosts rich in 24:1 SM and CHO, showed no lateral domain segregation. This study provides insights into how the specific molecular structure of SM affects the lateral behavior and the physical properties of both model and natural membranes. Specifically, the data suggest that unsaturated SM may help to keep membrane lipids in a homogeneous mixture rather than in separate domains.


Journal of Physical Chemistry B | 2015

Solvation and hydration of the ceramide headgroup in a non-polar solution.

Richard J. Gillams; Jon V. Busto; Sebastian Busch; Félix M. Goñi; Christian D. Lorenz; Sylvia E. McLain

The microscopic hydration of the ceramide headgroup has been determined using a combination of experimental-both NMR and neutron diffraction techniques and computational techniques-empirical potential structure refinement (EPSR) and molecular dynamics (MD). The addition of water to ceramide in chloroform solutions disrupts the chloroform solvation of the ceramide headgroup, and the water forms distinct pockets of density. Specifically, water is observed to preferentially hydrate the two hydroxyl groups and the carbonyl oxygen over the amide NH motif. Further assessment of the location and orientation of the water molecules bound to the ceramide headgroup makes it clear that the strongly solvated carbonyl moiety of the amide bond creates an anchor from which water molecules can bridge via hydrogen bonding interactions to the hydroxyl groups. Moreover, a significant difference in the hydration of the two hydroxyl groups indicates that water molecules are associated with the headgroup in such a way that they bridge between the carbonyl motif and the nearest neighbor hydroxyl group.


Biochimica et Biophysica Acta | 2014

Membrane binding and insertion of the predicted transmembrane domain of human scramblase 1.

Itziar M.D. Posada; Jon V. Busto; Félix M. Goñi; Alicia Alonso

Human phospholipid scramblase 1 (SCR) was originally described as an intrinsic membrane protein catalyzing transbilayer phospholipid transfer in the absence of ATP. More recently, a role as a nuclear transcription factor has been proposed for SCR, either in addition or alternatively to its capacity to facilitate phospholipid flip-flop. Uncertainties exist as well from the structural point of view. A predicted α-helix (aa residues 288-306) located near the C-terminus has been alternatively proposed as a transmembrane domain, or as a protein core structural element. This paper explores the possibilities of the above helical segment as a transmembrane domain. To this aim two peptides were synthesized, one corresponding to the 19 α-helical residues, and one containing both the helix and the subsequent 12-residues constituting the C-end of the protein. The interaction of these peptides with lipid monolayers and bilayers was tested with Langmuir balance surface pressure measurements, proteoliposome reconstitution and analysis, differential scanning calorimetry, tests of bilayer permeability, and fluorescence confocal microscopy. Bilayers of 28 different lipid compositions were examined in which lipid electric charge, bilayer fluidity and lateral heterogeneity (domain formation) were varied. All the results concur in supporting the idea that the 288-306 peptide of SCR becomes membrane inserted in the presence of lipid bilayers. Thus, the data are in agreement with the possibility of SCR as an integral membrane protein, without rejecting alternative cell locations.


Langmuir | 2015

Atomic Force Microscopy Characterization of Palmitoylceramide and Cholesterol Effects on Phospholipid Bilayers: A Topographic and Nanomechanical Study

Aritz B. García-Arribas; Jon V. Busto; Alicia Alonso; Félix M. Goñi

Supported planar bilayers (SPBs) on mica substrates have been studied at 23 °C under atomic force microscopy (AFM)-based surface topography and force spectroscopy with two main objectives: (i) to characterize palmitoylceramide (pCer)-induced gel (Lβ) domains in binary mixtures with either its sphingolipid relative palmitoylsphingomyelin (pSM) or the glycerophospholipid dipalmitoylphosphorylcholine (DPPC) and (ii) to evaluate effects of incorporating cholesterol (Chol) into the previous mixtures in terms of Cer and Chol cooperation for the generation of lamellar gel (Lβ) phases of ternary composition. Binary phospholipid/pCer mixtures at XpCer < 0.33 promote the generation of laterally segregated micron-sized pCer-rich domains. Their analysis at different phospholipid/pCer ratios, by means of domain thickness, roughness, and mechanical resistance to tip piercing, reveals unvarying AFM-derived features over increasing pCer concentrations. These results suggest that the domains grow in size with increasing pCer concentrations while keeping a constant phospholipid/pCer stoichiometry. Moreover, the data show important differences between pCer interactions with pSM or DPPC. Gel domains generated in pSM/pCer bilayers are thinner than the pSM-rich surrounding phase, while the opposite is observed in DPPC/pCer mixtures. Furthermore, a higher breakthrough force is observed for pSM/pCer as compared to DPPC/pCer domains, which can be associated with the preferential pCer interaction with its sphingolipid relative pSM. Cholesterol incorporation into both binary mixtures at a high Chol and pCer ratio abolishes any phospholipid/pCer binary domains. Bilayers with properties different from any of the pure or binary samples are observed instead. The data support no displacement of Chol by pCer or vice versa under these conditions, but rather a preferential interaction between the two hydrophobic lipids.

Collaboration


Dive into the Jon V. Busto's collaboration.

Top Co-Authors

Avatar

Félix M. Goñi

University of the Basque Country

View shared research outputs
Top Co-Authors

Avatar

Alicia Alonso

University of the Basque Country

View shared research outputs
Top Co-Authors

Avatar

Jesús Sot

University of the Basque Country

View shared research outputs
Top Co-Authors

Avatar

Aritz B. García-Arribas

University of the Basque Country

View shared research outputs
Top Co-Authors

Avatar

César Martín

University of the Basque Country

View shared research outputs
Top Co-Authors

Avatar

Faustino Mollinedo

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Bruno Maggio

National University of Cordoba

View shared research outputs
Top Co-Authors

Avatar

Begoña Ugarte-Uribe

University of the Basque Country

View shared research outputs
Top Co-Authors

Avatar

Hasna Ahyayauch

University of the Basque Country

View shared research outputs
Top Co-Authors

Avatar

Itziar Alkorta

University of the Basque Country

View shared research outputs
Researchain Logo
Decentralizing Knowledge