Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonas Erjefält is active.

Publication


Featured researches published by Jonas Erjefält.


The Journal of Allergy and Clinical Immunology | 2010

MEDI-563, a humanized anti-IL-5 receptor alpha mAb with enhanced antibody-dependent cell-mediated cytotoxicity function

Roland Kolbeck; Alexander Kozhich; Masamichi Koike; Li Peng; Cecilia K Andersson; Melissa Damschroder; Jennifer L. Reed; Robert M. Woods; William Dall'acqua; Geoffrey L. Stephens; Jonas Erjefält; Leif Bjermer; Alison A. Humbles; David Gossage; Herren Wu; Peter A. Kiener; George L. Spitalny; Charles R. Mackay; Nestor A. Molfino; Anthony J. Coyle

BACKGROUND Peripheral blood eosinophilia and lung mucosal eosinophil infiltration are hallmarks of bronchial asthma. IL-5 is a critical cytokine for eosinophil maturation, survival, and mobilization. Attempts to target eosinophils for the treatment of asthma by means of IL-5 neutralization have only resulted in partial removal of airway eosinophils, and this warrants the development of more effective interventions to further explore the role of eosinophils in the clinical expression of asthma. OBJECTIVE We sought to develop a novel humanized anti-IL-5 receptor alpha (IL-5Ralpha) mAb with enhanced effector function (MEDI-563) that potently depletes circulating and tissue-resident eosinophils and basophils for the treatment of asthma. METHODS We used surface plasmon resonance to determine the binding affinity of MEDI-563 to FcgammaRIIIa. Primary human eosinophils and basophils were used to demonstrate antibody-dependent cell-mediated cytotoxicity. The binding epitope of MEDI-563 on IL-5Ralpha was determined by using site-directed mutagenesis. The consequences of MEDI-563 administration on peripheral blood and bone marrow eosinophil depletion was investigated in nonhuman primates. RESULTS MEDI-563 binds to an epitope on IL-5Ralpha that is in close proximity to the IL-5 binding site, and it inhibits IL-5-mediated cell proliferation. MEDI-563 potently induces antibody-dependent cell-mediated cytotoxicity of both eosinophils (half-maximal effective concentration = 0.9 pmol/L) and basophils (half-maximal effective concentration = 0.5 pmol/L) in vitro. In nonhuman primates MEDI-563 depletes blood eosinophils and eosinophil precursors in the bone marrow. CONCLUSIONS MEDI-563 might provide a novel approach for the treatment of asthma through active antibody-dependent cell-mediated depletion of eosinophils and basophils rather than through passive removal of IL-5.


Cell and Tissue Research | 1995

In vivo restitution of airway epithelium

Jonas Erjefält; Ingrid Erjefält; F. Sundler; C G Persson

Epithelial shedding occurs in health and, extensively, in inflammatory airway diseases. This study describes deepithelialisation, reepithelialisation and associated events in guinea-pig trachea after shedding-like epithelial denudation in vivo. Mechanical deepithelialisation of an 800-μm wide tracheal zone was carried out using an orotracheal steel probe without bleeding or damage to the basement membrane. Reepithelialisation was studied by scanning- and transmission electron microscopy and light microscopy. Nerve fibres were examined by immunostaining. Cell proliferation was analysed by [3H]-thymidine autoradiography. Immediately after epithelial removal secretory and ciliated (and presumably basal) epithelial cells at the wound margin dedifferentiated, flattened and migrated rapidly (2–3 μm/min) over the denuded basement membrane. Within 8–15 h a new, flattened epithelium covered the entire deepithelialised zone. At 30 h a tight epithelial barrier was established and after 5 days the epithelium was fully redifferentiated. After completed migration an increased mitotic activity occurred in the epithelium and in fibroblasts/smooth muscle beneath the restitution zone. Reinnervating intraepithelial calcitonin gene-related peptide-containing nerve fibres appeared within 30 h. We conclude that (1) reproducible shedding-like denudation, without bleeding or damage to the basement membrane, can be produced in vivo; (2) secretory and ciliated cells participate in reepithelialisation by dedifferentiation and migration; (3) the initial migration is very fast in vivo; (4) shedding-like denudation may cause strong secretory and exudative responses as well as proliferation of epithelium, and fibroblasts/smooth muscle. Rapid restitution of airway epithelium may depend on contributions from the microcirculation and innervation.


PLOS ONE | 2009

MicroRNA expression profiling in mild asthmatic human airways and effect of corticosteroid therapy.

Andrew E. Williams; Hanna M. Larner-Svensson; Mark M. Perry; Gaynor A. Campbell; Sarah E. Herrick; Ian M. Adcock; Jonas Erjefält; Kian Fan Chung; Mark A. Lindsay

Background Asthma is a common disease characterised by reversible airflow obstruction, bronchial hyperresponsiveness and chronic inflammation, which is commonly treated using corticosteroids such as budesonide. MicroRNAs (miRNAs) are a recently identified family of non-protein encoding genes that regulate protein translation by a mechanism entitled RNA interference. Previous studies have shown lung-specific miRNA expression profiles, although their importance in regulating gene expression is unresolved. We determined whether miRNA expression was differentially expressed in mild asthma and the effect of corticosteroid treatment. Methodology/Principal Findings We have examined changes in miRNA using a highly sensitive RT-PCR based approach to measure the expression of 227 miRNAs in airway biopsies obtained from normal and mild asthmatic patients. We have also determined whether the anti-inflammatory action of corticosteroids are mediated through miRNAs by determining the profile of miRNA expression in mild asthmatics, before and following 1 month twice daily treatment with inhaled budesonide. Furthermore, we have analysed the expression of miRNAs from individual cell populations from the airway and lung. We found no significant difference in the expression of 227 miRNAs in the airway biopsies obtained from normal and mild asthmatic patients. In addition, despite improved lung function, we found no significant difference in the miRNA expression following one month treatment with the corticosteroid, budesonide. However, analysis of bronchial and alveolar epithelial cells, airway smooth muscle cells, alveolar macrophages and lung fibroblasts demonstrate a miRNA expression profile that is specific to individual cell types and demonstrates the complex cellular heterogeneity within whole tissue samples. Conclusions Changes in miRNA expression do not appear to be involved in the development of a mild asthmatic phenotype or in the anti-inflammatory action of the corticosteroid budesonide.


American Journal of Respiratory and Critical Care Medicine | 2011

IL-9 Governs Allergen-induced Mast Cell Numbers in the Lung and Chronic Remodeling of the Airways

Jennifer Kearley; Jonas Erjefält; Cecilia Andersson; Ebony Benjamin; Carla P. Jones; Annette Robichaud; Sophie Pegorier; Yambasu A. Brewah; Timothy Burwell; Leif Bjermer; Peter A. Kiener; Roland Kolbeck; Anthony J. Coyle; Alison A. Humbles

RATIONALE IL-9 is a pleiotropic cytokine that has multiple effects on structural as well as numerous hematopoietic cells, which are central to the pathogenesis of asthma. OBJECTIVES The contribution of IL-9 to asthma pathogenesis has thus far been unclear, due to conflicting reports in the literature. These earlier studies focused on the role of IL-9 in acute inflammatory models; here we have investigated the effects of IL-9 blockade during chronic allergic inflammation. METHODS Mice were exposed to either prolonged ovalbumin or house dust mite allergen challenge to induce chronic inflammation and airway remodeling. MEASUREMENTS AND MAIN RESULTS We found that IL-9 governs allergen-induced mast cell (MC) numbers in the lung and has pronounced effects on chronic allergic inflammation. Anti-IL-9 antibody-treated mice were protected from airway remodeling with a concomitant reduction in mature MC numbers and activation, in addition to decreased expression of the profibrotic mediators transforming growth factor-β1, vascular endothelial growth factor, and fibroblast growth factor-2 in the lung. Airway remodeling was associated with impaired lung function in the peripheral airways and this was reversed by IL-9 neutralization. In human asthmatic lung tissue, we identified MCs as the main IL-9 receptor expressing population and found them to be sources of vascular endothelial growth factor and fibroblast growth factor-2. CONCLUSIONS Our data suggest an important role for an IL-9-MC axis in the pathology associated with chronic asthma and demonstrate that an impact on this axis could lead to a reduction in chronic inflammation and improved lung function in patients with asthma.


Nature Immunology | 2016

IL-1β, IL-4 and IL-12 control the fate of group 2 innate lymphoid cells in human airway inflammation in the lungs

Suzanne M. Bal; Jochem H Bernink; Maho Nagasawa; Jelle Groot; Medya Shikhagaie; Kornel Golebski; Cornelis M. van Drunen; Rene Lutter; Rene E Jonkers; Pleun Hombrink; Mélanie Bruchard; Julien Villaudy; J. Marius Munneke; Wytske J. Fokkens; Jonas Erjefält; Hergen Spits; Xavier Romero Ros

Group 2 innate lymphoid cells (ILC2s) secrete type 2 cytokines, which protect against parasites but can also contribute to a variety of inflammatory airway diseases. We report here that interleukin 1β (IL-1β) directly activated human ILC2s and that IL-12 induced the conversion of these activated ILC2s into interferon-γ (IFN-γ)-producing ILC1s, which was reversed by IL-4. The plasticity of ILCs was manifested in diseased tissues of patients with severe chronic obstructive pulmonary disease (COPD) or chronic rhinosinusitis with nasal polyps (CRSwNP), which displayed IL-12 or IL-4 signatures and the accumulation of ILC1s or ILC2s, respectively. Eosinophils were a major cellular source of IL-4, which revealed cross-talk between IL-5-producing ILC2s and IL-4-producing eosinophils. We propose that IL-12 and IL-4 govern ILC2 functional identity and that their imbalance results in the perpetuation of type 1 or type 2 inflammation.


Nature Immunology | 2016

Inflammatory triggers associated with exacerbations of COPD orchestrate plasticity of group 2 innate lymphoid cells in the lungs

Jonathan S. Silver; Jennifer Kearley; Alan M. Copenhaver; Caroline Sandén; Michiko Mori; Li Yu; Gretchen Harms Pritchard; Aaron A. Berlin; Christopher A. Hunter; Russell Bowler; Jonas Erjefält; Roland Kolbeck; Alison A. Humbles

Innate lymphoid cells (ILCs) are critical mediators of mucosal immunity, and group 1 ILCs (ILC1 cells) and group 3 ILCs (ILC3 cells) have been shown to be functionally plastic. Here we found that group 2 ILCs (ILC2 cells) also exhibited phenotypic plasticity in response to infectious or noxious agents, characterized by substantially lower expression of the transcription factor GATA-3 and a concomitant switch to being ILC1 cells that produced interferon-γ (IFN-γ). Interleukin 12 (IL-12) and IL-18 regulated this conversion, and during viral infection, ILC2 cells clustered within inflamed areas and acquired an ILC1-like phenotype. Mechanistically, these ILC1 cells augmented virus-induced inflammation in a manner dependent on the transcription factor T-bet. Notably, IL-12 converted human ILC2 cells into ILC1 cells, and the frequency of ILC1 cells in patients with chronic obstructive pulmonary disease (COPD) correlated with disease severity and susceptibility to exacerbations. Thus, functional plasticity of ILC2 cells exacerbates anti-viral immunity, which may have adverse consequences in respiratory diseases such as COPD.


Immunity | 2015

Cigarette Smoke Silences Innate Lymphoid Cell Function and Facilitates an Exacerbated Type I Interleukin-33-Dependent Response to Infection

Jennifer Kearley; Jonathan S. Silver; Caroline Sandén; Zheng Liu; Aaron A. Berlin; Natalie White; Michiko Mori; Tuyet-Hang Pham; Christine Ward; Gerard J. Criner; Nathaniel Marchetti; Tomas Mustelin; Jonas Erjefält; Roland Kolbeck; Alison A. Humbles

Cigarette smoking is a major risk factor for chronic obstructive pulmonary disease and is presumed to be central to the altered responsiveness to recurrent infection in these patients. We examined the effects of smoke priming underlying the exacerbated response to viral infection in mice. Lack of interleukin-33 (IL-33) signaling conferred complete protection during exacerbation and prevented enhanced inflammation and exaggerated weight loss. Mechanistically, smoke was required to upregulate epithelial-derived IL-33 and simultaneously alter the distribution of the IL-33 receptor ST2. Specifically, smoke decreased ST2 expression on group 2 innate lymphoid cells (ILC2s) while elevating ST2 expression on macrophages and natural killer (NK) cells, thus altering IL-33 responsiveness within the lung. Consequently, upon infection and release, increased local IL-33 significantly amplified type I proinflammatory responses via synergistic modulation of macrophage and NK cell function. Therefore, in COPD, smoke alters the lung microenvironment to facilitate an alternative IL-33-dependent exaggerated proinflammatory response to infection, exacerbating disease.


The Journal of Allergy and Clinical Immunology | 1998

Cytolysis and piecemeal degranulation as distinct modes of activation of airway mucosal eosinophils

Jonas Erjefält; Morgan Andersson; Lennart Greiff; Magnus Korsgren; Mariuz Gizycki; Peter K. Jeffery; Carl Persson

BACKGROUND Cytotoxic eosinophil granule proteins are considered important in the pathogenesis of inflammatory airway diseases, including asthma, rhinitis, and polyposis. However, little is known about the mechanisms involved in the deposition of these tissue-damaging granular products in vivo. OBJECTIVE We sought to determine the occurrence of degranulating eosinophils, those with morphologic evidence of cytolysis with associated clusters of free eosinophil granules (Cfegs), and to identify the frequency of apoptotic eosinophils in inflamed upper airway tissue. METHODS Eosinophil-rich nasal polyps were processed for transmission electron microscopy and for light microscopic evaluation of whole-mount preparations subjected to deep tissue staining for eosinophil peroxidase. RESULTS The mean proportion of eosinophil subtypes were intact and resting (6.8%), intact but degranulating (83%), cytolytic or Cfegs (9.9%), and apoptotic (0.0%). All degranulating eosinophils exhibited piecemeal degranulation. The occurrence of Cfegs was confirmed in nonsectioned whole-mount preparations. Depending on the appearance of their core and matrix, the specific granules were divided into four subtypes, and a degranulation index (altered per total granules) was calculated for each eosinophil. Cytolytic eosinophils had a much lower degranulation index than intact eosinophils present in the same tissue (P < .001). CONCLUSIONS These data indicate that eosinophil cytolysis is present in human airway mucosa, that its occurrence is not an artifact of the means of tissue handling, and that cytolysis of eosinophils may occur without prior extensive degranulation. We suggest that eosinophil cytolysis is a major activation mechanism, which occurs along with, but is distinct from, other types of degranulation.


Respiratory Research | 2005

Up-regulation of Toll-like receptors 2, 3 and 4 in allergic rhinitis

Mattias Fransson; Mikael Adner; Jonas Erjefält; Lennart Jansson; Rolf Uddman; Lars-Olaf Cardell

BackgroundToll-like receptors enable the host to recognize a large number of pathogen-associated molecular patterns such as bacterial lipopolysaccharide, viral RNA, CpG-containing DNA and flagellin. Toll-like receptors have also been shown to play a pivotal role in both innate and adaptive immune responses. The role of Toll-like receptors as a primary part of our microbe defense system has been shown in several studies, but their possible function as mediators in allergy and asthma remains to be established. The present study was designed to examine the expression of Toll-like receptors 2, 3 and 4 in the nasal mucosa of patients with intermittent allergic rhinitis, focusing on changes induced by exposure to pollen.Methods27 healthy controls and 42 patients with seasonal allergic rhinitis volunteered for the study. Nasal biopsies were obtained before and during pollen season as well as before and after allergen challenge. The seasonal material was used for mRNA quantification of Toll-like receptors 2, 3 and 4 with real-time polymerase chain reaction, whereas specimens achieved in conjunction with allergen challenge were used for immunohistochemical localization and quantification of corresponding proteins.ResultsmRNA and protein representing Toll-like receptors 2, 3 and 4 could be demonstrated in all specimens. An increase in protein expression for all three receptors could be seen following allergen challenge, whereas a significant increase of mRNA only could be obtained for Toll-like receptor 3 during pollen season.ConclusionThe up-regulation of Toll-like receptors 2, 3 and 4 in the nasal mucosa of patients with symptomatic allergic rhinitis supports the idea of a role for Toll-like receptors in allergic airway inflammation.


Scandinavian Journal of Immunology | 1998

Contribution of Plasma-Derived Molecules to Mucosal Immune Defence, Disease and Repair in the Airways

Carl Persson; Jonas Erjefält; Lennart Greiff; I Erjefält; Magnus Korsgren; M Linden; F. Sundler; Morgan Andersson; Christer Svensson

This review discusses recent observations, in health and disease, on the release and distribution of plasma‐derived molecules in the airway mucosa. Briefly, the new data on airway mucosal exudation mechanisms suggest that the protein systems of plasma contribute significantly to the mucosal biology, not only in injured airways but also in such mildly inflamed airways that lack oedema and exhibit no sign of epithelial derangement. Plasma as a source of pluripotent growth factor, adhesive, leucocyte‐activating, etc., molecules may deserve a prominent position in schemes that claim to illustrate immunological and inflammatory mechanisms of the airway mucosa in vivo.

Collaboration


Dive into the Jonas Erjefält's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge