Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonas Hedberg is active.

Publication


Featured researches published by Jonas Hedberg.


Small | 2013

Intracellular Uptake and Toxicity of Ag and CuO Nanoparticles : A Comparison Between Nanoparticles and their Corresponding Metal Ions

Pontus Cronholm; Hanna L. Karlsson; Jonas Hedberg; Troy A. Lowe; Lina Winnberg; Karine Elihn; Inger Odnevall Wallinder; Lennart Möller

UNLABELLED An increased understanding of nanoparticle toxicity and its impact on human health is essential to enable a safe use of nanoparticles in our society. The aim of this study is to investigate the role of a Trojan horse type mechanism for the toxicity of Ag-nano and CuO-nano particles and their corresponding metal ionic species (using CuCl2 and AgNO3 ), i.e., the importance of the solid particle to mediate cellular uptake and subsequent release of toxic species inside the cell. The human lung cell lines A549 and BEAS-2B are used and cell death/membrane integrity and DNA damage are investigated by means of trypan blue staining and the comet assay, respectively. Chemical analysis of the cellular dose of copper and silver is performed using atomic absorption spectroscopy. Furthermore, transmission electron microscopy, laser scanning confocal microscopy, and confocal Raman microscopy are employed to study cellular uptake and particle-cell interactions. The results confirm a high uptake of CuO-nano and Ag-nano compared to no, or low, uptake of the soluble salts. CuO-nano induces both cell death and DNA damage whereas CuCl2 induces no toxicity. The opposite is observed for silver, where Ag-nano does not cause any toxicity, whereas AgNO3 induces a high level of cell death. IN CONCLUSION CuO-nano toxicity is predominantly mediated by intracellular uptake and subsequent release of copper ions, whereas no toxicity is observed for Ag-nano due to low release of silver ions within short time periods.


Journal of Materials Science: Materials in Medicine | 2013

Surface-protein interactions on different stainless steel grades: effects of protein adsorption, surface changes and metal release

Yolanda Hedberg; X. Wang; Jonas Hedberg; Maria Lundin; Eva Blomberg; I. Odnevall Wallinder

Implantation using stainless steels (SS) is an example where an understanding of protein-induced metal release from SS is important when assessing potential toxicological risks. Here, the protein-induced metal release was investigated for austenitic (AISI 304, 310, and 316L), ferritic (AISI 430), and duplex (AISI 2205) grades in a phosphate buffered saline (PBS, pH 7.4) solution containing either bovine serum albumin (BSA) or lysozyme (LSZ). The results show that both BSA and LSZ induce a significant enrichment of chromium in the surface oxide of all stainless steel grades. Both proteins induced an enhanced extent of released iron, chromium, nickel and manganese, very significant in the case of BSA (up to 40-fold increase), whereas both proteins reduced the corrosion resistance of SS, with the reverse situation for iron metal (reduced corrosion rates and reduced metal release in the presence of proteins). A full monolayer coverage is necessary to induce the effects observed.


Journal of Colloid and Interface Science | 2012

Interactions between surfactants and silver nanoparticles of varying charge

Jonas Hedberg; Maria Lundin; Troy A. Lowe; Eva Blomberg; Susanna Wold; Inger Odnevall Wallinder

The interaction between silver nanoparticles (Ag NPs) of different surface charge and surfactants relevant to the laundry cycle has been investigated to understand changes in speciation, both in and during transport from the washing machine. Ag NPs were synthesized to exhibit either a positive or a negative surface charge in solution conditions relevant for the laundry cycle (pH 10 and pH 7). These particles were characterized in terms of size and surface charge and compared to commercially laser ablated Ag NPs. The surfactants included anionic sodium dodecylbenzenesulfonate (LAS), cationic dodecyltrimethylammoniumchloride (DTAC) and nonionic Berol 266 (Berol). Surfactant-Ag NP interactions were studied by means of dynamic light scattering, Raman spectroscopy, zeta potential, and Quartz Crystal Microbalance. Mixed bilayers of CTAB and LAS were formed through a co-operative adsorption process on positively charged Ag NPs with pre-adsorbed CTAB, resulting in charge reversal from positive to negative zeta potentials. Adsorption of DTAC on negatively charged synthesized Ag NPs and negatively charged commercial Ag NPs resulted in bilayer formation and charge reversal. Weak interactions were observed for nonionic Berol with all Ag NPs via hydrophobic interactions, which resulted in decreased zeta potentials for Berol concentrations above its critical micelle concentration. Differences in particle size were essentially not affected by surfactant adsorption, as the surfactant layer thicknesses did not exceed more than a few nanometers. The surfactant interaction with the Ag NP surface was shown to be reversible, an observation of particular importance for hazard and environmental risk assessments.


Environmental Science & Technology | 2014

Sequential Studies of Silver Released from Silver Nanoparticles in Aqueous Media Simulating Sweat, Laundry Detergent Solutions and Surface Water

Jonas Hedberg; Sara Skoglund; Maria-Elisa Karlsson; Susanna Wold; Inger Odnevall Wallinder; Yolanda Hedberg

From an increased use of silver nanoparticles (Ag NPs) as an antibacterial in consumer products follows a need to assess the environmental interaction and fate of their possible dispersion and release of silver. This study aims to elucidate an exposure scenario of the Ag NPs potentially released from, for example, impregnated clothing by assessing the release of silver and changes in particle properties in sequential contact with synthetic sweat, laundry detergent solutions, and freshwater, simulating a possible transport path through different aquatic media. The release of ionic silver is addressed from a water chemical perspective, compared with important particle and surface characteristics. Released amounts of silver in the sequential exposures were significantly lower, approximately a factor of 2, than the sum of each separate exposure. Particle characteristics such as speciation (both of Ag ionic species and at the Ag NP surface) influenced the release of soluble silver species present on the surface, thereby increasing the total silver release in the separate exposures compared with sequential immersions. The particle stability had no drastic impact on the silver release as most of the Ag NPs were unstable in solution. The silver release was also influenced by a lower pH (increased release of silver), and cotransported zeolites (reduced silver in solution).


Langmuir | 2013

Effect of Laundry Surfactants on Surface Charge and Colloidal Stability of Silver Nanoparticles

Sara Skoglund; Troy A. Lowe; Jonas Hedberg; Eva Blomberg; Inger Odnevall Wallinder; Susanna Wold; Maria Lundin

The stability of silver nanoparticles (Ag NPs) potentially released from clothing during a laundry cycle and their interactions with laundry-relevant surfactants [anionic (LAS), cationic (DTAC), and nonionic (Berol)] have been investigated. Surface interactions between Ag NPs and surfactants influence their speciation and stability. In the absence of surfactants as well as in the presence of LAS, the negatively charged Ag NPs were stable in solution for more than 1 day. At low DTAC concentrations (≤1 mM), DTAC-Ag NP interactions resulted in charge neutralization and formation of agglomerates. The surface charge of the particles became positive at higher concentrations due to a bilayer type formation of DTAC that prevents from agglomeration due to repulsive electrostatic forces between the positively charged colloids. The adsorption of Berol was enhanced when above its critical micelle concentration (cmc). This resulted in a surface charge close to zero and subsequent agglomeration. Extended DLVO theory calculations were in compliance with observed findings. The stability of the Ag NPs was shown to depend on the charge and concentration of the adsorbed surfactants. Such knowledge is important as it may influence the subsequent transport of Ag NPs through different chemical transients and thus their potential bioavailability and toxicity.


Colloids and Surfaces B: Biointerfaces | 2014

Correlation between surface physicochemical properties and the release of iron from stainless steel AISI 304 in biological media

Yolanda Hedberg; Maria-Elisa Karlsson; Eva Blomberg; Inger Odnevall Wallinder; Jonas Hedberg

Stainless steel is widely used in biological environments, for example as implant material or in food applications, where adsorption-controlled ligand-induced metal release is of importance from a corrosion, health, and food safety perspective. The objective of this study was to elucidate potential correlations between surface energy and wettability of stainless steel surfaces and the release of iron in complexing biological media. This was accomplished by studying changes in surface energies calculated from contact angle measurements, surface oxide composition (X-ray photoelectron spectroscopy), and released iron (graphite furnace atomic absorption spectroscopy) for stainless steel grade AISI 304 immersed in fluids containing bovine serum albumin or citric acid, and non-complexing fluids such as NaCl, NaOH, and HNO3. It was shown that the surface wettability and polar surface energy components were all influenced by adventitious atmospheric carbon (surface contamination of low molecular weight), rather than differences in surface oxide composition in non-complexing solutions. Adsorption of both BSA and citrate, which resulted in ligand-induced metal release, strongly influenced the wettability and the surface energy, and correlated well with the measured released amount of iron.


PLOS ONE | 2016

Nickel Release, ROS Generation and Toxicity of Ni and NiO Micro- and Nanoparticles

Siiri Latvala; Jonas Hedberg; Sebastiano Di Bucchianico; Lennart Möller; Inger Odnevall Wallinder; Karine Elihn; Hanna L. Karlsson

Occupational exposure to airborne nickel is associated with an elevated risk for respiratory tract diseases including lung cancer. Therefore, the increased production of Ni-containing nanoparticles necessitates a thorough assessment of their physical, chemical, as well as toxicological properties. The aim of this study was to investigate and compare the characteristics of nickel metal (Ni) and nickel oxide (NiO) particles with a focus on Ni release, reactive oxygen species (ROS) generation, cellular uptake, cytotoxicity and genotoxicity. Four Ni-containing particles of both nano-size (Ni-n and NiO-n) and micron-size (Ni-m1 and Ni-m2) were tested. The released amount of Ni in solution was notably higher in artificial lysosomal fluid (e.g. 80–100 wt% for metallic Ni) than in cell medium after 24h (ca. 1–3 wt% for all particles). Each of the particles was taken up by the cells within 4 h and they remained in the cells to a high extent after 24 h post-incubation. Thus, the high dissolution in ALF appeared not to reflect the particle dissolution in the cells. Ni-m1 showed the most pronounced effect on cell viability after 48 h (alamar blue assay) whereas all particles showed increased cytotoxicity in the highest doses (20–40 μg cm2) when assessed by colony forming efficiency (CFE). Interestingly an increased CFE, suggesting higher proliferation, was observed for all particles in low doses (0.1 or 1 μg cm-2). Ni-m1 and NiO-n were the most potent in causing acellular ROS and DNA damage. However, no intracellular ROS was detected for any of the particles. Taken together, micron-sized Ni (Ni-m1) was more reactive and toxic compared to the nano-sized Ni. Furthermore, this study underlines that the low dose effect in terms of increased proliferation observed for all particles should be further investigated in future studies.


Environmental Science & Technology | 2014

Critical Review: Copper Runoff from Outdoor Copper Surfaces at Atmospheric Conditions

Yolanda Hedberg; Jonas Hedberg; Gunilla Herting; Sara Goidanich; Inger Odnevall Wallinder

This review on copper runoff dispersed from unsheltered naturally patinated copper used for roofing and facades summarizes and discusses influencing factors, available literature, and predictive models, and the importance of fate and speciation for environmental risk assessment. Copper runoff from outdoor surfaces is predominantly governed by electrochemical and chemical reactions and is highly dependent on given exposure conditions (size, inclination, geometry, degree of sheltering, and orientation), surface parameters (age, patina composition, and thickness), and site-specific environmental conditions (gaseous pollutants, chlorides, rainfall characteristics (amount, intensity, pH), wind direction, temperature, time of wetness, season). The corrosion rate cannot be used to assess the runoff rate. The extent of released copper varies largely between different rain events and is related to dry and wet periods, dry deposition prior to the rain event and prevailing rain and patina characteristics. Interpretation and use of copper runoff data for environmental risk assessment and management need therefore to consider site-specific factors and focus on average data of long-term studies (several years). Risk assessments require furthermore that changes in copper speciation, bioavailability aspects, and potential irreversible retention on solid surfaces are considered, factors that determine the environmental fate of copper runoff from outdoor surfaces.


Journal of The Electrochemical Society | 2010

Molecular Structural Information of the Atmospheric Corrosion of Zinc Studied by Vibrational Spectroscopy Techniques II. Two and Three-Dimensional Growth of Reaction Products Induced by Formic and Acetic Acid

Jonas Hedberg; Steven Baldelli; Christofer Leygraf

Molecular structural information of the atmospheric corrosion of zinc studied by vibrational spectroscopy techniques : Part II. Two and three dimensional growth of reaction products induced by formic and acetic acid


Colloids and Surfaces B: Biointerfaces | 2016

The importance of extracellular speciation and corrosion of copper nanoparticles on lung cell membrane integrity.

Jonas Hedberg; Hanna L. Karlsson; Yolanda Hedberg; Eva Blomberg; Inger Odnevall Wallinder

Copper nanoparticles (Cu NPs) are increasingly used in various biologically relevant applications and products, e.g., due to their antimicrobial and catalytic properties. This inevitably demands for an improved understanding on their interactions and potential toxic effects on humans. The aim of this study was to investigate the corrosion of copper nanoparticles in various biological media and to elucidate the speciation of released copper in solution. Furthermore, reactive oxygen species (ROS) generation and lung cell (A549 type II) membrane damage induced by Cu NPs in the various media were studied. The used biological media of different complexity are of relevance for nanotoxicological studies: Dulbeccos modified eagle medium (DMEM), DMEM(+) (includes fetal bovine serum), phosphate buffered saline (PBS), and PBS+histidine. The results show that both copper release and corrosion are enhanced in DMEM(+), DMEM, and PBS+histidine compared with PBS alone. Speciation results show that essentially no free copper ions are present in the released fraction of Cu NPs in neither DMEM(+), DMEM nor histidine, while labile Cu complexes form in PBS. The Cu NPs were substantially more membrane reactive in PBS compared to the other media and the NPs caused larger effects compared to the same mass of Cu ions. Similarly, the Cu NPs caused much more ROS generation compared to the released fraction only. Taken together, the results suggest that membrane damage and ROS formation are stronger induced by Cu NPs and by free or labile Cu ions/complexes compared with Cu bound to biomolecules.

Collaboration


Dive into the Jonas Hedberg's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christofer Leygraf

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Yolanda Hedberg

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Eva Blomberg

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susanna Wold

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Troy A. Lowe

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

I. Odnevall Wallinder

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge