Jonas Jourdan
Goethe University Frankfurt
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jonas Jourdan.
Science of The Total Environment | 2018
Michael Mirtl; E. T. Borer; I. Djukic; Martin Forsius; H. Haubold; W. Hugo; Jonas Jourdan; David B. Lindenmayer; William H. McDowell; Hiroyuki Muraoka; Daniel E. Orenstein; J.C. Pauw; Johannes Peterseil; Hideaki Shibata; Christoph Wohner; Xiaoqing Yu; Peter Haase
Since its founding in 1993 the International Long-term Ecological Research Network (ILTER) has gone through pronounced development phases. The current network comprises 44 active member LTER networks representing 700 LTER Sites and ~80 LTSER Platforms across all continents, active in the fields of ecosystem, critical zone and socio-ecological research. The critical challenges and most important achievements of the initial phase have now become state-of-the-art in networking for excellent science. At the same time increasing integration, accelerating technology, networking of resources and a strong pull for more socially relevant scientific information have been modifying the mission and goals of ILTER. This article provides a critical review of ILTERs mission, goals, development and impacts. Major characteristics, tools, services, partnerships and selected examples of relative strengths relevant for advancing ILTER are presented. We elaborate on the tradeoffs between the needs of the scientific community and stakeholder expectations. The embedding of ILTER in an increasingly collaborative landscape of global environmental observation and ecological research networks and infrastructures is also reflected by developments of pioneering regional and national LTER networks such as SAEON in South Africa, CERN/CEOBEX in China, TERN in Australia or eLTER RI in Europe. The primary role of ILTER is currently seen as a mechanism to investigate ecosystem structure, function, and services in response to a wide range of environmental forcings using long-term, place-based research. We suggest four main fields of activities and advancements for the next decade through development/delivery of a: (1) Global multi-disciplinary community of researchers and research institutes; (2) Strategic global framework and strong partnerships in ecosystem observation and research; (3) Global Research Infrastructure (GRI); and (4) a scientific knowledge factory for societally relevant information on sustainable use of natural resources.
Scientific Reports | 2016
Jonas Jourdan; Sarah T. Krause; V. Max Lazar; Claudia Zimmer; Carolin Sommer-Trembo; Lenin Arias-Rodriguez; Sebastian Klaus; Rüdiger Riesch; Martin Plath
Stream ecosystems show gradual variation of various selection factors, which can result in a zonation of species distributions and gradient evolution of morphological and life-history traits within species. Identifying the selective agents underlying such phenotypic evolution is challenging as different species could show shared and/or unique (species-specific) responses to components of the river gradient. We studied a stream gradient inhabited by two mosquitofishes (genus Gambusia) in the Río Grijalva basin in southern Mexico and found a patchy distribution pattern of both congeners along a stretch of 100 km, whereby one species was usually dominant at a given site. We uncovered both shared and unique patterns of diversification: some components of the stream gradient, including differences in piscine predation pressure, drove shared patterns of phenotypic divergence, especially in females. Other components of the gradient, particularly abiotic factors (max. annual temperature and temperature range) resulted in unique patterns of divergence, especially in males. Our study highlights the complexity of selective regimes in stream ecosystems. It exemplifies that even closely related, congeneric species can respond in unique ways to the same components of the river gradient and shows how both sexes can exhibit quite different patterns of divergence in multivariate phenotypic character suites.
BMC Evolutionary Biology | 2016
Rüdiger Riesch; Michael Tobler; Hannes Lerp; Jonas Jourdan; Tess Doumas; Patrik Nosil; R. Langerhans; Martin Plath
BackgroundReplicate population pairs that diverge in response to similar selective regimes allow for an investigation of (a) whether phenotypic traits diverge in a similar and predictable fashion, (b) whether there is gradual variation in phenotypic divergence reflecting variation in the strength of natural selection among populations, (c) whether the extent of this divergence is correlated between multiple character suites (i.e., concerted evolution), and (d) whether gradual variation in phenotypic divergence predicts the degree of reproductive isolation, pointing towards a role for adaptation as a driver of (ecological) speciation. Here, we use poeciliid fishes of the genera Gambusia and Poecilia that have repeatedly evolved extremophile lineages able to tolerate high and sustained levels of toxic hydrogen sulfide (H2S) to answer these questions.ResultsWe investigated evolutionary divergence in response to H2S in Gambusia spp. (and to a lesser extent Poecilia spp.) using a multivariate approach considering the interplay of life history, body shape, and population genetics (nuclear miscrosatellites to infer population genetic differentiation as a proxy for reproductive isolation). We uncovered both shared and unique patterns of evolution: most extremophile Gambusia predictably evolved larger heads and offspring size, matching a priori predictions for adaptation to sulfidic waters, while variation in adult life histories was idiosyncratic. When investigating patterns for both genera (Gambusia and Poecilia), we found that divergence in offspring-related life histories and body shape were positively correlated across populations, but evidence for individual-level associations between the two character suites was limited, suggesting that genetic linkage, developmental interdependencies, or pleiotropic effects do not explain patterns of concerted evolution. We further found that phenotypic divergence was positively correlated with both environmental H2S-concentration and neutral genetic differentiation (a proxy for gene flow).ConclusionsOur results suggest that higher toxicity exerts stronger selection, and that divergent selection appears to constrain gene flow, supporting a scenario of ecological speciation. Nonetheless, progress toward ecological speciation was variable, partially reflecting variation in the strength of divergent selection, highlighting the complexity of selective regimes even in natural systems that are seemingly governed by a single, strong selective agent.
PeerJ | 2014
Jonas Jourdan; David Bierbach; Rüdiger Riesch; Angela Schießl; Adriana Wigh; Lenin Arias-Rodriguez; Jeane Rimber Indy; Sebastian Klaus; Claudia Zimmer; Martin Plath
The Cueva del Azufre in Tabasco, Mexico, is a nutrient-rich cave and its inhabitants need to cope with high levels of dissolved hydrogen sulfide and extreme hypoxia. One of the successful colonizers of this cave is the poeciliid fish Poecilia mexicana, which has received considerable attention as a model organism to examine evolutionary adaptations to extreme environmental conditions. Nonetheless, basic ecological data on the endemic cave molly population are still missing; here we aim to provide data on population densities, size class compositions and use of different microhabitats. We found high overall densities in the cave and highest densities at the middle part of the cave with more than 200 individuals per square meter. These sites have lower H2S concentrations compared to the inner parts where most large sulfide sources are located, but they are annually exposed to a religious harvesting ceremony of local Zoque people called La Pesca. We found a marked shift in size/age compositions towards an overabundance of smaller, juvenile fish at those sites. We discuss these findings in relation to several environmental gradients within the cave (i.e., differences in toxicity and lighting conditions), but we also tentatively argue that the annual fish harvest during a religious ceremony (La Pesca) locally diminishes competition (and possibly, cannibalism by large adults), which is followed by a phase of overcompensation of fish densities.
Biological Invasions | 2016
Jonas Jourdan; Benjamin Westerwald; Antonia Kiechle; Wei Chen; Bruno Streit; Sebastian Klaus; Matthias Oetken; Martin Plath
A growing body of literature focuses on the adverse effects of biological invasions, e.g., on the decline of indigenous biodiversity, while studies on the consequences of invasions on components of ecosystem functioning are comparatively rare. Owing to their leaf shredding activity, amphipods play a fundamental role in determining energy flow dynamics in Central European freshwater ecosystems, but whether the dramatic change in species composition after the invasion of Ponto–Caspian taxa affects this process has not been addressed in a comprehensive study. In a laboratory experiment we determined consumption rates of three leaf types (Alnus glutinosa, Betula pendula, Quercus robur) from common riparian arboreal vegetation in the Rhine drainage—one of the most heavily invaded river systems worldwide—by the most common native (Gammarus fossarum, G. pulex, G. roeselii) and invasive amphipods (Dikerogammarus villosus, Echinogammarus ischnus). Leaf-shredding activity was significantly lower in invasive than in native amphipods across leaf types, and a subsequent analysis ruled out an effect of different metabolic rates as an explanation. Another experiment was motivated by the observation that native amphipods are nowadays restricted to smaller tributaries to the Rhine, while invasive taxa are dominant in the main channel. As leaf litter shredding may be more important in headwaters than in lower parts of streams, we sought for a signature of within-species variation in the feeding ecology of amphipods and thus compared two different populations of G. pulex, but found very similar leaf consumption rates in upstream and downstream populations, suggesting that food preferences in amphipods could be species-specific with little potential for microevolution or environmentally induced plasticity. In conclusion, the rapid replacement of native amphipod species in the Rhine drainage likely affects vital ecosystem services, with the potential to change the aquatic food web (e.g., through reduced shredding activity and hence, reduced resource availability for particle-feeding detritivores), unless other taxonomic groups compensate for those functional alterations.
Science of The Total Environment | 2018
Jonas Jourdan; Robert B. O'Hara; Roberta Bottarin; Kaisa-Leena Huttunen; Mathias Kuemmerlen; Dt Monteith; Timo Muotka; Dāvis Ozoliņš; Riku Paavola; Francesca Pilotto; Gunta Springe; Agnija Skuja; Andrea Sundermann; Jonathan D. Tonkin; Peter Haase
Long-term observations on riverine benthic invertebrate communities enable assessments of the potential impacts of global change on stream ecosystems. Besides increasing average temperatures, many studies predict greater temperature extremes and intense precipitation events as a consequence of climate change. In this study we examined long-term observation data (10-32years) of 26 streams and rivers from four ecoregions in the European Long-Term Ecological Research (LTER) network, to investigate invertebrate community responses to changing climatic conditions. We used functional trait and multi-taxonomic analyses and combined examinations of general long-term changes in communities with detailed analyses of the impact of different climatic drivers (i.e., various temperature and precipitation variables) by focusing on the response of communities to climatic conditions of the previous year. Taxa and ecoregions differed substantially in their response to climate change conditions. We did not observe any trend of changes in total taxonomic richness or overall abundance over time or with increasing temperatures, which reflects a compensatory turnover in the composition of communities; sensitive Plecoptera decreased in response to warmer years and Ephemeroptera increased in northern regions. Invasive species increased with an increasing number of extreme days which also caused an apparent upstream community movement. The observed changes in functional feeding group diversity indicate that climate change may be associated with changes in trophic interactions within aquatic food webs. These findings highlight the vulnerability of riverine ecosystems to climate change and emphasize the need to further explore the interactive effects of climate change variables with other local stressors to develop appropriate conservation measures.
BMC Evolutionary Biology | 2016
Carolin Sommer-Trembo; David Bierbach; Lenin Arias-Rodriguez; Yesim Verel; Jonas Jourdan; Claudia Zimmer; Rüdiger Riesch; Bruno Streit; Martin Plath
BackgroundOne aspect of premating isolation between diverging, locally-adapted population pairs is female mate choice for resident over alien male phenotypes. Mating preferences often show considerable individual variation, and whether or not certain individuals are more likely to contribute to population interbreeding remains to be studied. In the Poecilia mexicana-species complex different ecotypes have adapted to hydrogen sulfide (H2S)-toxic springs, and females from adjacent non-sulfidic habitats prefer resident over sulfide-adapted males. We asked if consistent individual differences in behavioral tendencies (animal personality) predict the strength and direction of the mate choice component of premating isolation in this system.ResultsWe characterized focal females for their personality and found behavioral measures of ‘novel object exploration’, ‘boldness’ and ‘activity in an unknown area’ to be highly repeatable. Furthermore, the interaction term between our measures of exploration and boldness affected focal females’ strength of preference (SOP) for the resident male phenotype in dichotomous association preference tests. High exploration tendencies were coupled with stronger SOPs for resident over alien mating partners in bold, but not shy, females. Shy and/or little explorative females had an increased likelihood of preferring the non-resident phenotype and thus, are more likely to contribute to rare population hybridization. When we offered large vs. small conspecific stimulus males instead, less explorative females showed stronger preferences for large male body size. However, this effect disappeared when the size difference between the stimulus males was small.ConclusionsOur results suggest that personality affects female mate choice in a very nuanced fashion. Hence, population differences in the distribution of personality types could be facilitating or impeding reproductive isolation between diverging populations depending on the study system and the male trait(s) upon which females base their mating decisions, respectively.
Aquatic Sciences | 2016
Jonas Jourdan; Jasmin Baier; Rüdiger Riesch; Sven Klimpel; Bruno Streit; Ruth Müller; Martin Plath
Phenotypic plasticity is predicted to evolve when subsequent generations are likely to experience alternating selection pressures; e.g., piscine predation on mosquitoes (Culex pipiens) varies strongly depending on habitat type. A prey-choice experiment (exp. 1) detected a predilection of common mosquito predators (sticklebacks, Gasterosteus aculeatus) for large-bodied mosquito larvae, suggesting that larvae could benefit from suppressing growth under predation risk, and experiment 2 confirmed reduced pupa size and weight when we exposed larvae to stickleback kairomones. In experiment 3, we measured adult (imago) size instead to test if altered larval growth-patterns affect adult life-history traits. We further asked how specific life-history responses are, and thus, also used kairomones from introduced Eastern mosquitofish (Gambusia holbrooki), and from algivorous, non-native catfish (Ancistrus sp.). Adult body mass was equally reduced in all three kairomone treatments, suggesting that a non-specific anti-predator response (e.g., reduced activity) results in reduced food uptake. However, imagines were distinctly smaller only in the stickleback treatment, pointing towards a specific, adaptive life-history shift in response to the presence of a coevolved predator: mosquito larvae appear to suppress growth when exposed to their native predator, which presumably reduces predation risk, but also affects body size after pupation. Our study suggests that (1) not all antipredator responses are necessarily predator-specific, and (2) fluctuation in the cost-benefit ratio of suppressing larval growth has selected for phenotypic plasticity in C. pipiens larval life histories. This implies costs associated with suppressed growth, for example, in the form of lower lifetime reproductive success.
Royal Society Open Science | 2017
Juliane Lukas; Jonas Jourdan; Gregor Kalinkat; Sebastian Emde; Friedrich Wilhelm Miesen; Hannah Jüngling; Berardino Cocchiararo; David Bierbach
Thermally influenced freshwater systems provide suitable conditions for non-native species of tropical and subtropical origin to survive and form proliferating populations beyond their native ranges. In Germany, non-native convict cichlids (Amatitlania nigrofasciata) and tilapia (Oreochromis sp.) have established populations in the Gillbach, a small stream that receives warm water discharge from a local power plant. Here, we report on the discovery of spotted tilapia (Pelmatolapia mariae) in the Gillbach, the first record of a reproducing population of this species in Europe. It has been hypothesized that Oreochromis sp. in the Gillbach are descendants of aquaculture escapees and our mtDNA analysis found both O. mossambicus and O. niloticus maternal lineages, which are commonly used for hybrids in aquaculture. Convict cichlids and spotted tilapia were most probably introduced into the Gillbach by aquarium hobbyists. Despite their high invasiveness worldwide, we argue that all three cichlid species are unlikely to spread and persist permanently beyond the thermally influenced range of the Gillbach river system. However, convict cichlids from the Gillbach are known to host both native and non-native fish parasites and thus, non-native cichlids may constitute threats to the native fish fauna. We therefore strongly recommend continuous monitoring of the Gillbach and similar systems.
Journal of Ethology | 2016
Carolin Sommer-Trembo; Claudia Zimmer; Jonas Jourdan; David Bierbach; Martin Plath
In the presence of predators, many prey species exhibit immediate behavioral responses like the avoidance of risky areas, which imposes opportunity costs, for instance, in the form of reduced foraging. Thus, prey species should be able to discriminate between different predator types and adjust their response to the imminent predation risk. In our current study, we evaluated the relative importance of innate versus learned components of predator recognition and avoidance in the guppy (Poecilia reticulata). We used a feral guppy population occurring in Germany and compared avoidance reactions of each focal individual towards both coevolved piscine predators from their original distribution range and novel, presently co-occurring predator species. Wild-caught, predator-experienced as well as laboratory-reared, predator-naïve individuals showed strong avoidance responses towards all predator animations. Avoidance was stronger in small-bodied than in large-bodied individuals in both cohorts; however, this effect was significant only in predator-naïve fish. Moreover, wild-caught individuals showed a significantly higher within-individual variance (across the six predator species) along with a lower among-individual variance in predator avoidance, which resulted in a lower behavioral repeatability in this cohort. Our results suggest that consistent individual differences in risk-taking behavior (also referred to as the personality trait ‘boldness’) are modified by predator exposure and learning about predators.