Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonas Reiffers is active.

Publication


Featured researches published by Jonas Reiffers.


Proceedings of SPIE | 2010

eROSITA on SRG

Peter Predehl; Robert Andritschke; W. Becker; Walter Bornemann; H. Bräuninger; H. Brunner; Thomas Boller; Vadim Burwitz; Wolfgang Burkert; Nicolas Clerc; E. Churazov; Diogo Coutinho; Konrad Dennerl; Josef Eder; Valentin Emberger; Tanja Eraerds; Michael J. Freyberg; Peter Friedrich; Maria Fürmetz; A. Georgakakis; Christoph Grossberger; F. Haberl; O. Hälker; Gisela D. Hartner; G. Hasinger; Johannes Hoelzl; Heinrich Huber; Andreas von Kienlin; Walter Kink; Ingo Kreykenbohm

eROSITA (extended ROentgen Survey with an Imaging Telescope Array) is the core instrument on the Russian/German Spektrum-Roentgen-Gamma (SRG) mission which is now officially scheduled for launch on March 26, 2016. eROSITA will perform a deep survey of the entire X-ray sky. In the soft band (0.5-2 keV), it will be about 30 times more sensitive than ROSAT, while in the hard band (2-8 keV) it will provide the first ever true imaging survey of the sky. The design driving science is the detection of large samples of galaxy clusters to redshifts z < 1 in order to study the large scale structure in the universe and test cosmological models including Dark Energy. In addition, eROSITA is expected to yield a sample of a few million AGN, including obscured objects, revolutionizing our view of the evolution of supermassive black holes. The survey will also provide new insights into a wide range of astrophysical phenomena, including X-ray binaries, active stars and diffuse emission within the Galaxy. eROSITA is currently (June 2014) in its flight model and calibration phase. All seven flight mirror modules (+ 1 spare) have been delivered and measured in X-rays. The first camera including the complete electronics has been extensively tested (vacuum + X-rays). A pre-test of the final end-toend test has been performed already. So far, all subsystems and components are well within their expected performances.


IEEE Transactions on Nuclear Science | 2011

Development and Characterization of New 256

Aline Meuris; Florian Aschauer; G. De Vita; B Guenther; S. Herrmann; T. Lauf; P. Lechner; G. Lutz; P. Majewski; Danilo Miessner; M. Porro; Jonas Reiffers; Alexander Stefanescu; F. Schopper; Heike Soltau; Lothar Strueder; J. Treis

DEPFET detectors are silicon (Si) active pixel sensors designed and manufactured in the Max-Planck-Institut semiconductor lab. Their high spatial resolution and high energy resolution in X-rays make them attractive for particle tracking in colliders and for X-ray astronomy. This technology is foreseen for the Wide Field Imager of the International X-ray Observatory currently in study with ESA, NASA, and JAXA. New DEPFET matrixes with 256 × 256 pixels of 75-μm pitch have been produced, mounted on ceramic boards with dedicated front-end electronics and integrated in a new setup able to acquire large-format images and spectra. Excellent homogeneity has been observed. Energy resolution as low as 127 eV FWHM at 5.9 keV has been obtained including all single events of the matrix back illuminated at -45<;°C and read out at a 300-frames/s rate. This paper presents experimental methods and results.


IEEE Transactions on Nuclear Science | 2012

\,\times\,

P. Majewski; L. Andricek; Alexander Bähr; G. De Vita; B. Gunther; K. Hermenau; Martin Hilchenbach; T. Lauf; P. Lechner; G. Lutz; Danilo Miessner; M. Porro; Jonas Reiffers; R. Richter; G. Schaller; M. Schnecke; F. Schopper; Heike Soltau; Alexander Stefanescu; Rafael Strecker; L. Strüder; J. Treis

The Mercury imaging X-ray spectrometer (MIXS) on board of ESAs fifth cornerstone mission BepiColombo will be the first space instrument using DEpleted P-channel FET (DEPFET) based detectors. The MIXS spectrometer comprises two channels with identical focal plane detectors and is dedicated to energy resolved imaging of X-ray fluorescence from the mercurial surface. We report on the characterization, integration, and spectroscopic qualification of MIXS flight detectors. Detector chips were precharacterized at die level in order to select the best dies for integration and to do homogeneity and yield studies. Then, the detector chips were integrated to MIXS Detector Plane Arrays (DPAs), a complicated process due to the sophisticated mechanical structure, which allows the thermal decoupling of the detector from its readout and control chips. After integration, spectroscopic qualification measurements were done in order to analyze the detector performance and to prove the excellent spectroscopic performance of the DEPFET Macropixel detectors over a wide temperature range. The integration and spectroscopic qualification of all flight grade modules is now successfully completed.


Proceedings of SPIE | 2014

256 Pixel DEPFET Detectors for X-Ray Astronomy

Norbert Meidinger; Robert Andritschke; Walter Bornemann; Diogo Coutinho; Valentin Emberger; O. Hälker; Walter Kink; Benjamin Mican; Siegfried Müller; Daniel Pietschner; Peter Predehl; Jonas Reiffers

The eROSITA space telescope is currently developed for the determination of cosmological parameters and the equation of state of dark energy via evolution of clusters of galaxies. Furthermore, the instrument development was strongly motivated by the intention of a first imaging X-ray all-sky survey enabling measurements above 2 keV. eROSITA is a scientific payload on the Russian research satellite SRG. Its destination after launch is the Lagrangian point L2. The observational program of the observatory divides into an all-sky survey and pointed observations and takes in total about 7.5 years. The instrument comprises an array of 7 identical and parallel aligned telescopes. Each of the seven focal plane cameras is equipped with a PNCCD detector, an enhanced type of the XMM-Newton focal plane detector. This instrumentation permits spectroscopy and imaging of X-rays in the energy band from 0.3 keV to 10 keV with a field of view of 1.0 degree. The camera development is done at the Max-Planck-Institute for extraterrestrial physics. Key component of each camera is the PNCCD chip. This silicon sensor is a back-illuminated, fully depleted and column-parallel type of charge coupled device. The image area of the 450 micron thick frame-transfer CCD comprises an array of 384 x 384 pixels, each with a size of 75 micron x 75 micron. Readout of the signal charge that is generated by an incident X-ray photon in the CCD is accomplished by an ASIC, the so-called eROSITA CAMEX. It provides 128 parallel analog signal processing channels but multiplexes the signals finally to one output which feeds the detector signals to a fast 14-bit ADC. The read noise of this system is equivalent to a noise charge of about 2.5 electrons rms. We achieve an energy resolution close to the theoretical limit given by Fano noise (except for very low energies). For example, the FWHM at an energy of 5.9 keV is approximately 140 eV. The complete camera assembly comprises the camera head with the detector as key component, the electronics for detector operation as well as data acquisition and the filter wheel unit. In addition to the on-chip light blocking filter directly deposited on the photon entrance window of the PNCCD, an external filter can be moved in front of the sensor, which serves also for contamination protection. Furthermore, an on-board calibration source emitting several fluorescence lines is accommodated on the filter wheel mechanism for the purpose of in-orbit calibration. Since the spectroscopic silicon sensors need cooling down to -95°C to mitigate best radiation damage effects, an elaborate cooling system is necessary. It consists of two different types of heat pipes linking the seven detectors to two radiators. Based on the tests with an engineering model, a flight design was developed for the camera and a qualification model has been built. The tests and the performance of this camera is presented in the following. In conclusion an outlook on the flight cameras is given.


Proceedings of SPIE | 2010

DEPFET Macropixel Detectors for MIXS: Integration and Qualification of the Flight Detectors

L. Strüder; Florian Aschauer; Mark W. Bautz; L. Bombelli; David N. Burrows; C. Fiorini; George W. Fraser; S. Herrmann; E. Kendziorra; M. Kuster; T. Lauf; Peter Lechner; G. Lutz; P. Majewski; Aline Meuris; M. Porro; Jonas Reiffers; R. Richter; A. Santangelo; Heike Soltau; Alexander Stefanescu; Chris Tenzer; J. Treis; Hiroshi Tsunemi; Giulio De Vita; J. Wilms

The Wide Field Imager (WFI) of the International X-ray Observatory (IXO) is an X-ray imaging spectrometer based on a large monolithic DePFET (Depleted P-channel Field Effect Transistor) Active Pixel Sensor. Filling an area of 10 x 10 cm2 with a format of 1024 x 1024 pixels it will cover a field of view of 18 arcmin. The pixel size of 100 x 100 μm2 corresponds to a fivefold oversampling of the telescopes expected 5 arcsec point spread function. The WFIs basic DePFET structure combines the functionalities of sensor and integrated amplifier with nearly Fano-limited energy resolution and high efficiency from 100 eV to 15 keV. The development of dedicated control and amplifier ASICs allows for high frame rates up to 1 kHz and flexible readout modes. Results obtained with representative prototypes with a format of 256 x 256 pixels are presented.


Proceedings of SPIE | 2015

Report on the eROSITA camera system

Norbert Meidinger; Josef Eder; Maria Fürmetz; Kirpal Nandra; Daniel Pietschner; Markus Plattner; Jonas Reiffers; Rafael Strecker; Marco Barbera; Thorsten Brand; J. Wilms

The WFI (Wide Field Imager) instrument is planned to be one of two complementary focal plane cameras on ESA’s next X-ray observatory Athena. It combines unprecedented survey power through its large field of view of 40 arcmin x 40 arcmin together with excellent count-rate capability (≥ 1 Crab). The energy resolution of the silicon sensor is state-of-the-art in the energy band of interest from 0.2 keV to 15 keV, e.g. the full width at half maximum of a line at 6 keV will be ≤ 150 eV until the end of the nominal mission phase. This performance is accomplished by using DEPFET active pixel sensors with a pixel size of 130 μm x 130 μm well suited to the on-axis angular resolution of 5 arcsec of the mirror system. Each DEPFET pixel is a combined detector-amplifier structure with a MOSFET integrated onto a fully depleted 450 μm thick silicon bulk. Two different types of DEPFET sensors are planned for the WFI instrument: A set of four large-area sensors to cover the physical size of 14 cm x 14 cm in the focal plane and a single smaller gateable DEPFET sensor matrix optimized for high count-rate observations. Here we present the conceptual design of the instrument with focus on the critical subsystems and describe the instrument performance expectations. An outline of the model philosophy and the project organization completes the presentation.


Proceedings of SPIE | 2013

The wide-field imager for IXO: status and future activities

Norbert Meidinger; Robert Andritschke; Florian Aschauer; Walter Bornemann; Valentin Emberger; Tanja Eraerds; Maria Fürmetz; O. Hälker; Gisela D. Hartner; Walter Kink; Siegfried Müller; Daniel Pietschner; Peter Predehl; Jonas Reiffers; Sabine Walther; Georg Weidenspointner

The eROSITA space telescope is presently developed for the determination of cosmological parameters and the equation of state of dark energy via evolution of galaxy clusters. It will perform in addition a census of the obscured black hole growth in the Universe. The instrument development was also strongly motivated by the intention of a first imaging X-ray all-sky survey above an energy of 2 keV. eROSITA is scientific payload on the Russian research satellite SRG and the mission duration is scheduled for 7.5 years. The instrument comprises an array of seven identical and parallel-aligned telescopes. The mirror system is of Wolter-I type and the focal plane is equipped with a PNCCD camera for each of the telescopes. This instrumentation permits spectroscopy and imaging of X-rays in the energy band from 0.3 keV to 10 keV with a field of view of 1.0 degree. The camera development is done at the Max-Planck-Institute for Extraterrestrial Physics and in particular the key component, the PNCCD sensor, has been designed and fabricated at the semiconductor laboratory of the Max-Planck Society. All produced devices have been tested and the best selected for the eROSITA project. Based on calculations, simulations, and experimental testing of prototype systems, the flight cameras have been configured. We describe the detector and its performance, the camera design and electronics, the thermal system, and report on the latest estimates of the expected radiation damage taking into account the generation of secondary neutrons. The most recent test results will be presented as well as the status of the instrument development.


nuclear science symposium and medical imaging conference | 2010

Development of the wide field imager for Athena

Norbert Meidinger; Robert Andritschke; W. Assmann; Stefanie Ebermayer; Johannes Elbs; O. Hälker; Emanuel Heindl; S. Herrmann; Nils Kimmel; Daniel Pietschner; Jonas Reiffers; S. Reinhardt; G. Schächner; L. Strüder; Georg Weidenspointner

The German X-ray telescope eROSITA is the core instrument on the Russian satellite Spectrum-Roentgen-Gamma (SRG). Its scientific goal is the exploration of the X-ray Universe in the energy band from about 0.3 keV up to 10 keV with excellent energy, time and spatial resolution and large effective telescope area. The launch of the SRG satellite is scheduled for 2013. The observational program divides the planned mission duration of seven years into an all-sky survey and pointed observations. For detection of the single X-ray photons with high resolution, adequate frame transfer pnCCDs and the associated front-end electronics have been developed. The back-illuminated, 450 μm thick and fully depleted pnCCDs with a 3 cm × 3 cm large image area have been produced in the MPI Halbleiterlabor in the course of further development of the XMM-Newton X-ray pnCCDs. By means of the concept of back-illumination and full depletion of the chip thickness, high quantum efficiency is obtained over the entire energy band of interest. The performance of each eROSITA CCD was tested on chip level using a so-called ‘cold chuck probe station’. A special feature of this setup is that it allows spectroscopic measurements with a 55Fe source. Based on these results, we will select the seven best CCDs for the eROSITA focal plane cameras. An analog signal processor with 128 parallel channels has been developed for readout of the pnCCD signals. This ASIC permits fast and low-noise signal filtering. For a detailed characterization of the CCD detectors an appropriate control, supply and data acquisition electronics system was developed. We achieve a read noise of 2 electrons rms and an energy resolution of 135 eV FWHM for photons with energy of 5.9 keV. Even at the low X-ray energy of 280 eV, we measure a spectrum of Gaussian shape with a FWHM of 52 eV. However, the energy resolution will degrade during the seven years in space due to radiation damage caused by protons. The radiation damage effect was studied and quantified for the eROSITA CCDs in an experiment. After successful development and verification of the CCD and its signal processor chip, we have started to assemble a flight-like eROSITA camera.


nuclear science symposium and medical imaging conference | 2010

Progress of the x-ray CCD camera development for the eROSITA telescope

Aline Meuris; Florian Aschauer; S. Herrmann; T. Lauf; Peter Lechner; G. Lutz; P. Majewski; Danilo Miessner; M. Porro; Jonas Reiffers; Alexander Stefanescu; Lothar Strueder; J. Treis

DEPFET detectors are silicon active pixel sensors for X-ray imaging spectroscopy. They will be used for the MIXS instrument of BepiColombo planetary mission and they are foreseen for the Wide Field Imager of the International X-ray Observatory currently in study with ESA, NASA and JAXA. New DEPFET matrixes with 256 × 256 pixels of 75 μm pitch have been produced, mounted on ceramic boards with dedicated front-end electronics and integrated in a new set-up able to acquire large-format images and spectra. Excellent homogeneity has been observed on two samples. Energy resolution as low as 129 eV FWHM at 5.9 keV has been obtained including all single events of the matrix back illuminated at −40°C and read out at a 300 frames per second rate. Experimental methods and results are reported.


Proceedings of SPIE | 2010

CCD detector development for the eROSITA space telescope

J. Treis; L. Andricek; Florian Aschauer; K. Heinzinger; S. Herrmann; T. Lauf; P. Lechner; G. Lutz; P. Majewski; M. Porro; Jonas Reiffers; R. Richter; G. Schaller; M. Schnecke; F. Schopper; Heike Soltau; Alexander Stefanescu; L. Strüder; G. De Vita

X-ray detectors based on arrays of DEPFET macropixels, which consist of a silicon drift detector combined with a detector/amplifier structure DEPFET as readout node, provide a convenient and flexible way to adapt the pixel size of a focal plane detector to the resolving power of any given X-ray optical system. Macropixels combine the traditional benefits of an SDD, like scalability, arbitrary geometry and excellent QE even in the low energy range, with the advantages of DEPFET structures: Charge storage capability, near Fano-limited energy resolution, low power consumption and high speed readout. Being part of the scientific payload of ESAs BepiColombo mission, the MIXS instrument will be the first instrument to make use of DEPFET macropixel based FPA detectors in space. MIXS will perform a complete planetary X-ray fluorescence analysis of Mercurys crust with high spectral and spatial resolution. MIXS will contain two focal plane detectors consisting of a 64 × 64 macropixel matrix with 300 × 300 μm2 pixel size. The main challenges for the instrument are the difficult radiation and thermal environment around Mercury, requiring high speed readout and sophisticated thermal management to reduce the impact of thermally generated leakage current within an irradiated detector. Dedicated VLSI integrated readout electronics has been developed for MIXS: a fast, radiation hard, low power, high voltage switch circuit to control the device, and a low noise, high speed amplifier/shaper IC. Detector assemblies have been built, electrical screening tests for the flight models and spectroscopical qualification tests are in progress.

Collaboration


Dive into the Jonas Reiffers's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Herrmann

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge