Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonas Richiardi is active.

Publication


Featured researches published by Jonas Richiardi.


NeuroImage | 2011

Decoding brain states from fMRI connectivity graphs

Jonas Richiardi; Hamdi Eryilmaz; Sophie Schwartz; Patrik Vuilleumier; Dimitri Van De Ville

Functional connectivity analysis of fMRI data can reveal synchronised activity between anatomically distinct brain regions. Here, we extract the characteristic connectivity signatures of different brain states to perform classification, allowing us to decode the different states based on the functional connectivity patterns. Our approach is based on polythetic decision trees, which combine powerful discriminative ability with interpretability of results. We also propose to use ensemble of classifiers within specific frequency subbands, and show that they bring systematic improvement in classification accuracy. Exploiting multi-band classification of connectivity graphs is also proposed, and we explain theoretical reasons why the technique could bring further improvement in classification performance. The choice of decision trees as classifier is shown to provide a practical way to identify a subset of connections that distinguishes best between the conditions, permitting the extraction of very compact representations for differences between brain states, which we call discriminative graphs. Our experimental results based on strict train/test separation at all stages of processing show that the method is applicable to inter-subject brain decoding with relatively low error rates for the task considered.


Science | 2015

Correlated gene expression supports synchronous activity in brain networks

Jonas Richiardi; Andre Altmann; Anna-Clare Milazzo; Catie Chang; M. Mallar Chakravarty; Tobias Banaschewski; Gareth J. Barker; Arun L.W. Bokde; Uli Bromberg; Christian Büchel; Patricia J. Conrod; Mira Fauth-Bühler; Herta Flor; Vincent Frouin; Jürgen Gallinat; Hugh Garavan; Penny A. Gowland; Andreas Heinz; Hervé Lemaitre; Karl Mann; Jean-Luc Martinot; Frauke Nees; Tomáš Paus; Zdenka Pausova; Marcella Rietschel; Trevor W. Robbins; Michael N. Smolka; Rainer Spanagel; Andreas Ströhle; Gunter Schumann

Cooperating brain regions express similar genes When the brain is at rest, a number of distinct areas are functionally connected. They tend to be organized in networks. Richiardi et al. compared brain imaging and gene expression data to build computational models of these networks. These functional networks are underpinned by the correlated expression of a core set of 161 genes. In this set, genes coding for ion channels and other synaptic functions such as neurotransmitter release dominate. Science, this issue p. 1241 Gene expression is more similar than expected by chance in brain regions that are functionally connected. During rest, brain activity is synchronized between different regions widely distributed throughout the brain, forming functional networks. However, the molecular mechanisms supporting functional connectivity remain undefined. We show that functional brain networks defined with resting-state functional magnetic resonance imaging can be recapitulated by using measures of correlated gene expression in a post mortem brain tissue data set. The set of 136 genes we identify is significantly enriched for ion channels. Polymorphisms in this set of genes significantly affect resting-state functional connectivity in a large sample of healthy adolescents. Expression levels of these genes are also significantly associated with axonal connectivity in the mouse. The results provide convergent, multimodal evidence that resting-state functional networks correlate with the orchestrated activity of dozens of genes linked to ion channel activity and synaptic function.


Neuroinformatics | 2013

PRoNTo: Pattern Recognition for Neuroimaging Toolbox.

Jessica Schrouff; Maria Joao Rosa; Jane M. Rondina; Andre F. Marquand; Carlton Chu; John Ashburner; Christophe Phillips; Jonas Richiardi; Janaina Mourão-Miranda

In the past years, mass univariate statistical analyses of neuroimaging data have been complemented by the use of multivariate pattern analyses, especially based on machine learning models. While these allow an increased sensitivity for the detection of spatially distributed effects compared to univariate techniques, they lack an established and accessible software framework. The goal of this work was to build a toolbox comprising all the necessary functionalities for multivariate analyses of neuroimaging data, based on machine learning models. The “Pattern Recognition for Neuroimaging Toolbox” (PRoNTo) is open-source, cross-platform, MATLAB-based and SPM compatible, therefore being suitable for both cognitive and clinical neuroscience research. In addition, it is designed to facilitate novel contributions from developers, aiming to improve the interaction between the neuroimaging and machine learning communities. Here, we introduce PRoNTo by presenting examples of possible research questions that can be addressed with the machine learning framework implemented in PRoNTo, and cannot be easily investigated with mass univariate statistical analysis.


IEEE Transactions on Pattern Analysis and Machine Intelligence | 2010

The Multiscenario Multienvironment BioSecure Multimodal Database (BMDB)

Javier Ortega-Garcia; Julian Fierrez; Fernando Alonso-Fernandez; Javier Galbally; Manuel Freire; Joaquin Gonzalez-Rodriguez; Carmen García-Mateo; Jose-Luis Alba-Castro; Elisardo González-Agulla; Enrique Otero-Muras; Sonia Garcia-Salicetti; Lorene Allano; Bao Ly-Van; Bernadette Dorizzi; Josef Kittler; Thirimachos Bourlai; Norman Poh; Farzin Deravi; Ming Wah R. Ng; Michael C. Fairhurst; Jean Hennebert; Andrea Monika Humm; Massimo Tistarelli; Linda Brodo; Jonas Richiardi; Andrzej Drygajlo; Harald Ganster; Federico M. Sukno; Sri-Kaushik Pavani; Alejandro F. Frangi

A new multimodal biometric database designed and acquired within the framework of the European BioSecure Network of Excellence is presented. It is comprised of more than 600 individuals acquired simultaneously in three scenarios: 1 over the Internet, 2 in an office environment with desktop PC, and 3 in indoor/outdoor environments with mobile portable hardware. The three scenarios include a common part of audio/video data. Also, signature and fingerprint data have been acquired both with desktop PC and mobile portable hardware. Additionally, hand and iris data were acquired in the second scenario using desktop PC. Acquisition has been conducted by 11 European institutions. Additional features of the BioSecure Multimodal Database (BMDB) are: two acquisition sessions, several sensors in certain modalities, balanced gender and age distributions, multimodal realistic scenarios with simple and quick tasks per modality, cross-European diversity, availability of demographic data, and compatibility with other multimodal databases. The novel acquisition conditions of the BMDB allow us to perform new challenging research and evaluation of either monomodal or multimodal biometric systems, as in the recent BioSecure Multimodal Evaluation campaign. A description of this campaign including baseline results of individual modalities from the new database is also given. The database is expected to be available for research purposes through the BioSecure Association during 2008.


Philosophical Transactions of the Royal Society B | 2014

Graph analysis of functional brain networks: practical issues in translational neuroscience

Jonas Richiardi; Mario Chavez; Sophie Achard

The brain can be regarded as a network: a connected system where nodes, or units, represent different specialized regions and links, or connections, represent communication pathways. From a functional perspective, communication is coded by temporal dependence between the activities of different brain areas. In the last decade, the abstract representation of the brain as a graph has allowed to visualize functional brain networks and describe their non-trivial topological properties in a compact and objective way. Nowadays, the use of graph analysis in translational neuroscience has become essential to quantify brain dysfunctions in terms of aberrant reconfiguration of functional brain networks. Despite its evident impact, graph analysis of functional brain networks is not a simple toolbox that can be blindly applied to brain signals. On the one hand, it requires the know-how of all the methodological steps of the pipeline that manipulate the input brain signals and extract the functional network properties. On the other hand, knowledge of the neural phenomenon under study is required to perform physiologically relevant analysis. The aim of this review is to provide practical indications to make sense of brain network analysis and contrast counterproductive attitudes.


international conference on document analysis and recognition | 2005

Local and global feature selection for on-line signature verification

Jonas Richiardi; Hamed Ketabdar; Andrzej Drygajlo

In this paper we propose a methodology for selecting the most discriminative features in a set for online signature verification. We expose the difference in the definition of class between signature verification and other pattern recognition tasks, and extend the classical Fisher ratio to make it more robust to the small sample sizes typically found when dealing with global features and client enrollment time constraints for signature verification systems. We apply our methodology to global and local features extracted from a 50-users database, and find that our criterion agrees better with classifier error rates for local features than for global features. We discuss the possibility of performing feature selection without having forgery data available.


Proceedings of the 2003 ACM SIGMM workshop on Biometrics methods and applications | 2003

Gaussian Mixture Models for on-line signature verification

Jonas Richiardi; Andrzej Drygajlo

This paper introduces and motivates the use of Gaussian Mixture Models (GMMs) for on-line signature verification. The individual Gaussian components are shown to represent some local, signer-dependent features that characterise spatial and temporal aspects of a signature, and are effective for modelling its specificity. The focus of this work is on automated order selection for signature models, based on the Minimum Description Length (MDL) principle. A complete experimental evaluation of the Gaussian Mixture signature models is conducted on a 50-user subset of the MCYT multimodal database. Algorithmic issues are explored and comparisons to other commonly used on-line signature modelling techniques based on Hidden Markov Models (HMMs) are made.


IEEE Signal Processing Magazine | 2013

Machine Learning with Brain Graphs: Predictive Modeling Approaches for Functional Imaging in Systems Neuroscience

Jonas Richiardi; Sophie Achard; Horst Bunke; D. Van De Ville

The observation and description of the living brain has attracted a lot of research over the past centuries. Many noninvasive imaging modalities have been developed, such as topographical techniques based on the electromagnetic field potential [i.e., electroencephalography (EEG) and magnetoencephalography (MEG)], and tomography approaches including positron emission tomography and magnetic resonance imaging (MRI). Here we will focus on functional MRI (fMRI) since it is widely deployed for clinical and cognitive neurosciences today, and it can reveal brain function due to neurovascular coupling (see ?From Brain Images to fMRI Time Series?). It has led to a much better understanding of brain function, including the description of brain areas with very specialized functions such as face recognition. These neuroscientific insights have been made possible by important methodological advances in MR physics, signal processing, and mathematical modeling.


NeuroImage | 2012

Classifying minimally disabled multiple sclerosis patients from resting state functional connectivity

Jonas Richiardi; Markus Gschwind; Samanta Simioni; Jean-Marie Annoni; Béatrice Gréco; Patric Hagmann; Myriam Schluep; Patrik Vuilleumier; Dimitri Van De Ville

Multiple sclerosis (MS), a variable and diffuse disease affecting white and gray matter, is known to cause functional connectivity anomalies in patients. However, related studies published to-date are post hoc; our hypothesis was that such alterations could discriminate between patients and healthy controls in a predictive setting, laying the groundwork for imaging-based prognosis. Using functional magnetic resonance imaging resting state data of 22 minimally disabled MS patients and 14 controls, we developed a predictive model of connectivity alterations in MS: a whole-brain connectivity matrix was built for each subject from the slow oscillations (<0.11 Hz) of region-averaged time series, and a pattern recognition technique was used to learn a discriminant function indicating which particular functional connections are most affected by disease. Classification performance using strict cross-validation yielded a sensitivity of 82% (above chance at p<0.005) and specificity of 86% (p<0.01) to distinguish between MS patients and controls. The most discriminative connectivity changes were found in subcortical and temporal regions, and contralateral connections were more discriminative than ipsilateral connections. The pattern of decreased discriminative connections can be summarized post hoc in an index that correlates positively (ρ=0.61) with white matter lesion load, possibly indicating functional reorganisation to cope with increasing lesion load. These results are consistent with a subtle but widespread impact of lesions in white matter and in gray matter structures serving as high-level integrative hubs. These findings suggest that predictive models of resting state fMRI can reveal specific anomalies due to MS with high sensitivity and specificity, potentially leading to new non-invasive markers.


Proceedings of SPIE, the International Society for Optical Engineering | 2007

Quality dependent fusion of intramodal and multimodal biometric experts

Josef Kittler; Norman Poh; Omolara Fatukasi; Kieron Messer; Krzysztof Kryszczuk; Jonas Richiardi; Andrzej Drygajlo

We address the problem of score level fusion of intramodal and multimodal experts in the context of biometric identity verification. We investigate the merits of confidence based weighting of component experts. In contrast to the conventional approach where confidence values are derived from scores, we use instead raw measures of biometric data quality to control the influence of each expert on the final fused score. We show that quality based fusion gives better performance than quality free fusion. The use of quality weighted scores as features in the definition of the fusion functions leads to further improvements. We demonstrate that the achievable performance gain is also affected by the choice of fusion architecture. The evaluation of the proposed methodology involves 6 face and one speech verification experts. It is carried out on the XM2VTS data base.

Collaboration


Dive into the Jonas Richiardi's collaboration.

Top Co-Authors

Avatar

Andrzej Drygajlo

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Dimitri Van De Ville

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Plamen J. Prodanov

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge