Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonas Warringer is active.

Publication


Featured researches published by Jonas Warringer.


Nature Biotechnology | 2011

Systematic exploration of essential yeast gene function with temperature-sensitive mutants

Zhijian Li; Franco J. Vizeacoumar; Sondra Bahr; Jingjing Li; Jonas Warringer; Frederick Vizeacoumar; Renqiang Min; Benjamin VanderSluis; Jeremy Bellay; Michael Devit; James A. Fleming; Andrew D. Stephens; Julian Haase; Zhen Yuan Lin; Anastasia Baryshnikova; Hong Lu; Zhun Yan; Ke Jin; Sarah L. Barker; Alessandro Datti; Guri Giaever; Corey Nislow; Chris Bulawa; Chad L. Myers; Michael Costanzo; Anne-Claude Gingras; Zhaolei Zhang; Anders Blomberg; Kerry Bloom; Brenda Andrews

Conditional temperature-sensitive (ts) mutations are valuable reagents for studying essential genes in the yeast Saccharomyces cerevisiae. We constructed 787 ts strains, covering 497 (∼45%) of the 1,101 essential yeast genes, with ∼30% of the genes represented by multiple alleles. All of the alleles are integrated into their native genomic locus in the S288C common reference strain and are linked to a kanMX selectable marker, allowing further genetic manipulation by synthetic genetic array (SGA)–based, high-throughput methods. We show two such manipulations: barcoding of 440 strains, which enables chemical-genetic suppression analysis, and the construction of arrays of strains carrying different fluorescent markers of subcellular structure, which enables quantitative analysis of phenotypes using high-content screening. Quantitative analysis of a GFP-tubulin marker identified roles for cohesin and condensin genes in spindle disassembly. This mutant collection should facilitate a wide range of systematic studies aimed at understanding the functions of essential genes.


PLOS Genetics | 2011

Trait Variation in Yeast Is Defined by Population History

Jonas Warringer; Enikö Zörgö; Francisco A. Cubillos; Amin Zia; Arne B. Gjuvsland; Jared T. Simpson; Annabelle Forsmark; Richard Durbin; Stig W. Omholt; Edward J. Louis; Gianni Liti; Alan M. Moses; Anders Blomberg

A fundamental goal in biology is to achieve a mechanistic understanding of how and to what extent ecological variation imposes selection for distinct traits and favors the fixation of specific genetic variants. Key to such an understanding is the detailed mapping of the natural genomic and phenomic space and a bridging of the gap that separates these worlds. Here we chart a high-resolution map of natural trait variation in one of the most important genetic model organisms, the budding yeast Saccharomyces cerevisiae, and its closest wild relatives and trace the genetic basis and timing of major phenotype changing events in its recent history. We show that natural trait variation in S. cerevisiae exceeds that of its relatives, despite limited genetic variation, and follows the population history rather than the source environment. In particular, the West African population is phenotypically unique, with an extreme abundance of low-performance alleles, notably a premature translational termination signal in GAL3 that cause inability to utilize galactose. Our observations suggest that many S. cerevisiae traits may be the consequence of genetic drift rather than selection, in line with the assumption that natural yeast lineages are remnants of recent population bottlenecks. Disconcertingly, the universal type strain S288C was found to be highly atypical, highlighting the danger of extrapolating gene-trait connections obtained in mosaic, lab-domesticated lineages to the species as a whole. Overall, this study represents a step towards an in-depth understanding of the causal relationship between co-variation in ecology, selection pressure, natural traits, molecular mechanism, and alleles in a key model organism.


Yeast | 2003

Automated screening in environmental arrays allows analysis of quantitative phenotypic profiles in Saccharomyces cerevisiae.

Jonas Warringer; Anders Blomberg

A methodology for large‐scale automated phenotypic profiling utilizing quantitative changes in yeast growth has been tested and applied to the analysis of some commonly used laboratory strains. This yeast‐adjusted methodology is based on microcultivation in 350 µl liquid medium, where growth is frequently optically recorded, followed by automated extraction of relevant variables from obtained growth curves. We report that cultivation at this micro‐scale displayed overall growth features and protein expression pattern highly similar to growth in well aerated medium‐scale (10 ml) culture. However, differences were also encountered, mainly relating to the respiratory potential and the production of stress‐induced proteins. Quantitative phenotypic profiles for the laboratory yeast strains W303, FY1679 and CEN‐PK.2 were screened for in environmental arrays, including 98 different conditions composed of low, medium and high concentrations of 33 growth inhibitors. We introduce the concepts phenotypic indexrate and phenotypic indexstationary, which relate to changes in rate of growth and the stationary phase optical density increment, respectively, in a particular environment relative a reference strain. The laboratory strains presented selective phenotypic profiles in both phenotypic indexes and the two features appeared in many cases to be independent characteristics. We propose the utilization of this methodology in large‐scale screening of the complete collection of yeast deletion mutants. Copyright


Proceedings of the National Academy of Sciences of the United States of America | 2003

High-resolution yeast phenomics resolves different physiological features in the saline response

Jonas Warringer; Elke Ericson; Luciano Fernandez; Olle Nerman; Anders Blomberg

We present a methodology for gene functional prediction based on extraction of physiologically relevant growth variables from all viable haploid yeast knockout mutants. This quantitative phenomics approach, here applied to saline cultivation, identified marginal but functionally important phenotypes and allowed the precise determination of time to adapt to an environmental challenge, rate of growth, and efficiency of growth. We identified ≈500 salt-sensitive gene deletions, the majority of which were previously uncharacterized and displayed salt sensitivity for only one of the three physiological features. We also report a high correlation to protein–protein interaction data; in particular, several salt-sensitive subcellular networks indicating functional modules were revealed. In contrast, no correlation was found between gene dispensability and gene expression. It is proposed that high-resolution phenomics will be instrumental in systemwide descriptions of intragenomic functional networks.


Genome Research | 2011

Revealing the genetic structure of a trait by sequencing a population under selection

Leopold Parts; Francisco A. Cubillos; Jonas Warringer; Kanika Jain; Francisco Salinas; Suzannah Bumpstead; Mikael Molin; Amin Zia; Jared T. Simpson; Michael A. Quail; Alan M. Moses; Edward J. Louis; Richard Durbin; Gianni Liti

One approach to understanding the genetic basis of traits is to study their pattern of inheritance among offspring of phenotypically different parents. Previously, such analysis has been limited by low mapping resolution, high labor costs, and large sample size requirements for detecting modest effects. Here, we present a novel approach to map trait loci using artificial selection. First, we generated populations of 10-100 million haploid and diploid segregants by crossing two budding yeast strains of different heat tolerance for up to 12 generations. We then subjected these large segregant pools to heat stress for up to 12 d, enriching for beneficial alleles. Finally, we sequenced total DNA from the pools before and during selection to measure the changes in parental allele frequency. We mapped 21 intervals with significant changes in genetic background in response to selection, which is several times more than found with traditional linkage methods. Nine of these regions contained two or fewer genes, yielding much higher resolution than previous genomic linkage studies. Multiple members of the RAS/cAMP signaling pathway were implicated, along with genes previously not annotated with heat stress response function. Surprisingly, at most selected loci, allele frequencies stopped changing before the end of the selection experiment, but alleles did not become fixed. Furthermore, we were able to detect the same set of trait loci in a population of diploid individuals with similar power and resolution, and observed primarily additive effects, similar to what is seen for complex trait genetics in other diploid organisms such as humans.


Molecular Biology and Evolution | 2014

A high-definition view of functional genetic variation from natural yeast genomes

Anders Bergström; Jared T. Simpson; Francisco Salinas; Benjamin Barré; Leopold Parts; Amin Zia; Alex N. Nguyen Ba; Alan M. Moses; Edward J. Louis; Ville Mustonen; Jonas Warringer; Richard Durbin; Gianni Liti

The question of how genetic variation in a population influences phenotypic variation and evolution is of major importance in modern biology. Yet much is still unknown about the relative functional importance of different forms of genome variation and how they are shaped by evolutionary processes. Here we address these questions by population level sequencing of 42 strains from the budding yeast Saccharomyces cerevisiae and its closest relative S. paradoxus. We find that genome content variation, in the form of presence or absence as well as copy number of genetic material, is higher within S. cerevisiae than within S. paradoxus, despite genetic distances as measured in single-nucleotide polymorphisms being vastly smaller within the former species. This genome content variation, as well as loss-of-function variation in the form of premature stop codons and frameshifting indels, is heavily enriched in the subtelomeres, strongly reinforcing the relevance of these regions to functional evolution. Genes affected by these likely functional forms of variation are enriched for functions mediating interaction with the external environment (sugar transport and metabolism, flocculation, metal transport, and metabolism). Our results and analyses provide a comprehensive view of genomic diversity in budding yeast and expose surprising and pronounced differences between the variation within S. cerevisiae and that within S. paradoxus. We also believe that the sequence data and de novo assemblies will constitute a useful resource for further evolutionary and population genomics studies.


Molecular Ecology | 2011

Assessing the complex architecture of polygenic traits in diverged yeast populations

Francisco A. Cubillos; Eleonora Billi; Enikö Zörgö; Leopold Parts; Patrick Fargier; Stig W. Omholt; Anders Blomberg; Jonas Warringer; Edward J. Louis; Gianni Liti

Phenotypic variation arising from populations adapting to different niches has a complex underlying genetic architecture. A major challenge in modern biology is to identify the causative variants driving phenotypic variation. Recently, the baker’s yeast, Saccharomyces cerevisiae has emerged as a powerful model for dissecting complex traits. However, past studies using a laboratory strain were unable to reveal the complete architecture of polygenic traits. Here, we present a linkage study using 576 recombinant strains obtained from crosses of isolates representative of the major lineages. The meiotic recombinational landscape appears largely conserved between populations; however, strain‐specific hotspots were also detected. Quantitative measurements of growth in 23 distinct ecologically relevant environments show that our recombinant population recapitulates most of the standing phenotypic variation described in the species. Linkage analysis detected an average of 6.3 distinct QTLs for each condition tested in all crosses, explaining on average 39% of the phenotypic variation. The QTLs detected are not constrained to a small number of loci, and the majority are specific to a single cross‐combination and to a specific environment. Moreover, crosses between strains of similar phenotypes generate greater variation in the offspring, suggesting the presence of many antagonistic alleles and epistatic interactions. We found that subtelomeric regions play a key role in defining individual quantitative variation, emphasizing the importance of the adaptive nature of these regions in natural populations. This set of recombinant strains is a powerful tool for investigating the complex architecture of polygenic traits.


RNA | 2009

mRNA stability changes precede changes in steady-state mRNA amounts during hyperosmotic stress

Claes Molin; Alexandra Jauhiainen; Jonas Warringer; Olle Nerman; Per Sunnerhagen

Under stress, cells need to optimize the activity of a wide range of gene products during the response phases: shock, adaptation, and recovery. This requires coordination of several levels of regulation, including turnover and translation efficiencies of mRNAs. Mitogen-activated protein (MAP) kinase pathways are implicated in many aspects of the environmental stress response, including initiation of transcription, translation efficiency, and mRNA turnover. In this study, we analyze mRNA turnover rates and mRNA steady-state levels at different time points following mild hyperosmotic shock in Saccharomyces cerevisiae cells. The regulation of mRNA stability is transient and affects most genes for which there is a change in transcript level. These changes precede and prepare for the changes in steady-state levels, both regarding the initial increase and the later decline of stress-induced mRNAs. The inverse is true for stress-repressed genes, which become stabilized during hyperosmotic stress in preparation of an increase as the cells recover. The MAP kinase Hog1 affects both steady-state levels and stability of stress-responsive transcripts, whereas the Hog1-activated kinase Rck2 influences steady-state levels without a major effect on stability. Regulation of mRNA stability is a wide-spread, but not universal, effect on stress-responsive transcripts during transient hyperosmotic stress. By destabilizing stress-induced mRNAs when their steady-state levels have reached a maximum, the cell prepares for the subsequent recovery phase when these transcripts are to return to normal levels. Conversely, stabilization of stress-repressed mRNAs permits their rapid accumulation in the recovery phase. Our results show that mRNA turnover is coordinated with transcriptional induction.


Molecular Biology of the Cell | 2010

The HOG Pathway Dictates the Short-Term Translational Response after Hyperosmotic Shock

Jonas Warringer; Malin Hult; Sergi Regot; Francesc Posas; Per Sunnerhagen

In the global osmoshock translational response in yeast, some gene products were translationally mobilized without transcriptional up-regulation. Conversely, other transcriptionally up-regulated mRNAs were translationally inhibited. Analogous changes occurred on the protein level. These translational responses were strongly dependent on Hog1 and Rck2.


Genetics | 2013

High-Resolution Mapping of Complex Traits with a Four-Parent Advanced Intercross Yeast Population

Francisco A. Cubillos; Leopold Parts; Francisco Salinas; Anders Bergström; Eugenio Scovacricchi; Amin Zia; Christopher J. R. Illingworth; Ville Mustonen; Sebastian Ibstedt; Jonas Warringer; Edward J. Louis; Richard Durbin; Gianni Liti

A large fraction of human complex trait heritability is due to a high number of variants with small marginal effects and their interactions with genotype and environment. Such alleles are more easily studied in model organisms, where environment, genetic makeup, and allele frequencies can be controlled. Here, we examine the effect of natural genetic variation on heritable traits in a very large pool of baker’s yeast from a multiparent 12th generation intercross. We selected four representative founder strains to produce the Saccharomyces Genome Resequencing Project (SGRP)-4X mapping population and sequenced 192 segregants to generate an accurate genetic map. Using these individuals, we mapped 25 loci linked to growth traits under heat stress, arsenite, and paraquat, the majority of which were best explained by a diverging phenotype caused by a single allele in one condition. By sequencing pooled DNA from millions of segregants grown under heat stress, we further identified 34 and 39 regions selected in haploid and diploid pools, respectively, with most of the selection against a single allele. While the most parsimonious model for the majority of loci mapped using either approach was the effect of an allele private to one founder, we could validate examples of pleiotropic effects and complex allelic series at a locus. SGRP-4X is a deeply characterized resource that provides a framework for powerful and high-resolution genetic analysis of yeast phenotypes and serves as a test bed for testing avenues to attack human complex traits.

Collaboration


Dive into the Jonas Warringer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gianni Liti

University of Nice Sophia Antipolis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stig W. Omholt

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leopold Parts

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Francisco Salinas

University of Nice Sophia Antipolis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anders Bergström

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Johan Hallin

University of Nice Sophia Antipolis

View shared research outputs
Researchain Logo
Decentralizing Knowledge