Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonas Wulff is active.

Publication


Featured researches published by Jonas Wulff.


european conference on computer vision | 2012

A naturalistic open source movie for optical flow evaluation

Daniel J. Butler; Jonas Wulff; Garrett B. Stanley; Michael J. Black

Ground truth optical flow is difficult to measure in real scenes with natural motion. As a result, optical flow data sets are restricted in terms of size, complexity, and diversity, making optical flow algorithms difficult to train and test on realistic data. We introduce a new optical flow data set derived from the open source 3D animated short film Sintel. This data set has important features not present in the popular Middlebury flow evaluation: long sequences, large motions, specular reflections, motion blur, defocus blur, and atmospheric effects. Because the graphics data that generated the movie is open source, we are able to render scenes under conditions of varying complexity to evaluate where existing flow algorithms fail. We evaluate several recent optical flow algorithms and find that current highly-ranked methods on the Middlebury evaluation have difficulty with this more complex data set suggesting further research on optical flow estimation is needed. To validate the use of synthetic data, we compare the image- and flow-statistics of Sintel to those of real films and videos and show that they are similar. The data set, metrics, and evaluation website are publicly available.


computer vision and pattern recognition | 2013

A Fully-Connected Layered Model of Foreground and Background Flow

Deqing Sun; Jonas Wulff; Erik B. Sudderth; Hanspeter Pfister; Michael J. Black

Layered models allow scene segmentation and motion estimation to be formulated together and to inform one another. Traditional layered motion methods, however, employ fairly weak models of scene structure, relying on locally connected Ising/Potts models which have limited ability to capture long-range correlations in natural scenes. To address this, we formulate a fully-connected layered model that enables global reasoning about the complicated segmentations of real objects. Optimization with fully-connected graphical models is challenging, and our inference algorithm leverages recent work on efficient mean field updates for fully-connected conditional random fields. These methods can be implemented efficiently using high-dimensional Gaussian filtering. We combine these ideas with a layered flow model, and find that the long-range connections greatly improve segmentation into figure-ground layers when compared with locally connected MRF models. Experiments on several benchmark datasets show that the method can recover fine structures and large occlusion regions, with good flow accuracy and much lower computational cost than previous locally-connected layered models.


computer vision and pattern recognition | 2015

Efficient sparse-to-dense optical flow estimation using a learned basis and layers

Jonas Wulff; Michael J. Black

We address the elusive goal of estimating optical flow both accurately and efficiently by adopting a sparse-to-dense approach. Given a set of sparse matches, we regress to dense optical flow using a learned set of full-frame basis flow fields. We learn the principal components of natural flow fields using flow computed from four Hollywood movies. Optical flow fields are then compactly approximated as a weighted sum of the basis flow fields. Our new PCA-Flow algorithm robustly estimates these weights from sparse feature matches. The method runs in under 200ms/frame on the MPI-Sintel dataset using a single CPU and is more accurate and significantly faster than popular methods such as LDOF and Classic+NL. For some applications, however, the results are too smooth. Consequently, we develop a novel sparse layered flow method in which each layer is represented by PCA-Flow. Unlike existing layered methods, estimation is fast because it uses only sparse matches. We combine information from different layers into a dense flow field using an image-aware MRF. The resulting PCA-Layers method runs in 3.2s/frame, is significantly more accurate than PCA-Flow, and achieves state-of-the-art performance in occluded regions on MPI-Sintel.


Proceedings of SPIE | 2009

Classification of Colon Polyps in NBI Endoscopy using Vascularization Features

Thomas Stehle; Roland Auer; Sebastian Gross; Alexander Behrens; Jonas Wulff; Til Aach; Ron Winograd; Christian Trautwein; Jens J. W. Tischendorf

The evolution of colon cancer starts with colon polyps. There are two different types of colon polyps, namely hyperplasias and adenomas. Hyperplasias are benign polyps which are known not to evolve into cancer and, therefore, do not need to be removed. By contrast, adenomas have a strong tendency to become malignant. Therefore, they have to be removed immediately via polypectomy. For this reason, a method to differentiate reliably adenomas from hyperplasias during a preventive medical endoscopy of the colon (colonoscopy) is highly desirable. A recent study has shown that it is possible to distinguish both types of polyps visually by means of their vascularization. Adenomas exhibit a large amount of blood vessel capillaries on their surface whereas hyperplasias show only few of them. In this paper, we show the feasibility of computer-based classification of colon polyps using vascularization features. The proposed classification algorithm consists of several steps: For the critical part of vessel segmentation, we implemented and compared two segmentation algorithms. After a skeletonization of the detected blood vessel candidates, we used the results as seed points for the Fast Marching algorithm which is used to segment the whole vessel lumen. Subsequently, features are computed from this segmentation which are then used to classify the polyps. In leave-one-out tests on our polyp database (56 polyps), we achieve a correct classification rate of approximately 90%.


european conference on computer vision | 2014

Modeling Blurred Video with Layers

Jonas Wulff; Michael J. Black

Videos contain complex spatially-varying motion blur due to the combination of object motion, camera motion, and depth variation with finite shutter speeds. Existing methods to estimate optical flow, deblur the images, and segment the scene fail in such cases. In particular, boundaries between differently moving objects cause problems, because here the blurred images are a combination of the blurred appearances of multiple surfaces. We address this with a novel layered model of scenes in motion. From a motion-blurred video sequence, we jointly estimate the layer segmentation and each layer’s appearance and motion. Since the blur is a function of the layer motion and segmentation, it is completely determined by our generative model. Given a video, we formulate the optimization problem as minimizing the pixel error between the blurred frames and images synthesized from the model, and solve it using gradient descent. We demonstrate our approach on synthetic and real sequences.


Bildverarbeitung für die Medizin | 2009

Polyp Segmentation in NBI Colonoscopy

Sebastian Gross; Manuel Kennel; Thomas Stehle; Jonas Wulff; Jens J. W. Tischendorf; Christian Trautwein; Til Aach

Endoscopic screening of the colon (colonoscopy) is performed to prevent cancer and to support therapy. During intervention colon polyps are located, inspected and, if need be, removed by the investigator. We propose a segmentation algorithm as a part of an automatic polyp classification system for colonoscopic Narrow-Band images. Our approach includes multi-scale filtering for noise reduction, suppression of small blood vessels, and enhancement of major edges. Results of the subsequent edge detection are compared to a set of elliptic templates and evaluated. We validated our algorithm on our polyp database with images acquired during routine colonoscopic examinations. The presented results show the reliable segmentation performance of our method and its robustness to image variations.


Bildverarbeitung für die Medizin | 2009

Dynamic Distortion Correction for Endoscopy Systems with Exchangeable Optics

Thomas Stehle; Michael Hennes; Sebastian Gross; Alexander Behrens; Jonas Wulff; Til Aach

Endoscopic images are strongly affected by lens distortion caused by the use of wide angle lenses. In case of endoscopy systems with exchangeable optics, e.g. in bladder endoscopy or sinus endoscopy, the camera sensor and the optics do not form a rigid system but they can be shifted and rotated with respect to each other during an examination. This flexibility has a major impact on the location of the distortion centre as it is moved along with the optics. In this paper, we describe an algorithm for the dynamic correction of lens distortion in cystoscopy which is based on a one time calibration. For the compensation, we combine a conventional static method for distortion correction with an algorithm to detect the position and the orientation of the elliptic field of view. This enables us to estimate the position of the distortion centre according to the relative movement of camera and optics. Therewith, a distortion correction for arbitrary rotation angles and shifts becomes possible without performing static calibrations for every possible combination of shifts and angles beforehand.


eurographics | 2015

Smooth loops from unconstrained video

Laura Sevilla-Lara; Jonas Wulff; Kalyan Sunkavalli; Eli Shechtman

Converting unconstrained video sequences into videos that loop seamlessly is an extremely challenging problem. In this work, we take the first steps towards automating this process by focusing on an important subclass of videos containing a single dominant foreground object. Our technique makes two novel contributions over previous work: first, we propose a correspondence‐based similarity metric to automatically identify a good transition point in the video where the appearance and dynamics of the foreground are most consistent. Second, we develop a technique that aligns both the foreground and background about this transition point using a combination of global camera path planning and patch‐based video morphing. We demonstrate that this allows us to create natural, compelling, loopy videos from a wide range of videos collected from the internet.


international symposium on biomedical imaging | 2009

Denoising fluorescence endoscopy - A motion compensated temporal recursive video filter with an optimal minimum mean square error parameterization

Thomas Stehle; Jonas Wulff; Alexander Behrens; Sebastian Gross; Til Aach

Fluorescence endoscopy is an emerging technique for the detection of bladder cancer. A marker substance is brought into the patients bladder which accumulates at cancer tissue. If a suitable narrow band light source is used for illumination, a red fluorescence of the marker substance is observable. Because of the low fluorescence photon count and because of the narrow band light source, only a small amount of light is detected by the cameras CCD sensor. This, in turn, leads to strong noise in the recorded video sequence. To overcome this problem, we apply a temporal recursive filter to the video sequence. The derivation of a filter function is presented, which leads to an optimal filter in the minimum mean square error sense. The algorithm is implemented as plug-in for the real-time capable clinical demonstrator platform RealTimeFrame and it is capable to process color videos with a resolution of 768×576 pixels at 50 frames per second.


computer vision and pattern recognition | 2017

Optical Flow in Mostly Rigid Scenes

Jonas Wulff; Laura Sevilla-Lara; Michael J. Black

The optical flow of natural scenes is a combination of the motion of the observer and the independent motion of objects. Existing algorithms typically focus on either recovering motion and structure under the assumption of a purely static world or optical flow for general unconstrained scenes. We combine these approaches in an optical flow algorithm that estimates an explicit segmentation of moving objects from appearance and physical constraints. In static regions we take advantage of strong constraints to jointly estimate the camera motion and the 3D structure of the scene over multiple frames. This allows us to also regularize the structure instead of the motion. Our formulation uses a Plane+Parallax framework, which works even under small baselines, and reduces the motion estimation to a one-dimensional search problem, resulting in more accurate estimation. In moving regions the flow is treated as unconstrained, and computed with an existing optical flow method. The resulting Mostly-Rigid Flow (MR-Flow) method achieves state-of-the-art results on both the MPI-Sintel and KITTI-2015 benchmarks.

Collaboration


Dive into the Jonas Wulff's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Til Aach

RWTH Aachen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pawan Sinha

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roland Auer

RWTH Aachen University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge