Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan A. Bennett is active.

Publication


Featured researches published by Jonathan A. Bennett.


Science | 2015

Worldwide evidence of a unimodal relationship between productivity and plant species richness

Lauchlan H. Fraser; Jason Pither; Anke Jentsch; Marcelo Sternberg; Martin Zobel; Diana Askarizadeh; Sándor Bartha; Carl Beierkuhnlein; Jonathan A. Bennett; Alex Bittel; Bazartseren Boldgiv; Ilsi Iob Boldrini; Edward W. Bork; Leslie R. Brown; Marcelo Cabido; James F. Cahill; Cameron N. Carlyle; Giandiego Campetella; Stefano Chelli; Ofer Cohen; Anna Maria Csergo; Sandra Díaz; Lucas Enrico; David Ensing; Alessandra Fidelis; Jason D. Fridley; Bryan L. Foster; Heath W. Garris; Jacob R. Goheen; Hugh A. L. Henry

Grassland diversity and ecosystem productivity The relationship between plant species diversity and ecosystem productivity is controversial. The debate concerns whether diversity peaks at intermediate levels of productivity—the so-called humped-back model—or whether there is no clear predictable relationship. Fraser et al. used a large, standardized, and geographically diverse sample of grasslands from six continents to confirm the validity and generality of the humped-back model. Their findings pave the way for a more mechanistic understanding of the factors controlling species diversity. Science, this issue p. 302 The humped-back model of plant species diversity is confirmed by a global grassland survey. The search for predictions of species diversity across environmental gradients has challenged ecologists for decades. The humped-back model (HBM) suggests that plant diversity peaks at intermediate productivity; at low productivity few species can tolerate the environmental stresses, and at high productivity a few highly competitive species dominate. Over time the HBM has become increasingly controversial, and recent studies claim to have refuted it. Here, by using data from coordinated surveys conducted throughout grasslands worldwide and comprising a wide range of site productivities, we provide evidence in support of the HBM pattern at both global and regional extents. The relationships described here provide a foundation for further research into the local, landscape, and historical factors that maintain biodiversity.


Science | 2017

Plant-soil feedbacks and mycorrhizal type influence temperate forest population dynamics

Jonathan A. Bennett; Hafiz Maherali; Kurt O. Reinhart; Ylva Lekberg; Miranda M. Hart; John N. Klironomos

Soil biota and plant diversity Soil biota, including symbionts such as mycorrhizal fungi and nitrogen-fixing bacteria, as well as fungal and bacterial pathogens, affect terrestrial plant diversity and growth patterns (see the Perspective by van der Putten). Teste et al. monitored growth and survival in Australian shrubland plant species paired with soil biota from plants of the same species and from other plants that use different nutrient acquisition strategies. Plant-soil feedbacks appear to drive local plant diversity through interactions between the different types of plants and their associated soil biota. Bennett et al. studied plant-soil feedbacks in soil and seeds from 550 populations of 55 species of North American trees. Feedbacks ranged from positive to negative, depending on the type of mycorrhizal association, and were related to how densely the same species occurred in natural populations. Science, this issue p. 134, p. 173; see also p. 181 A large-scale study of North American trees reveals how different soil-associated fungi can either help or hinder tree growth. Feedback with soil biota is an important determinant of terrestrial plant diversity. However, the factors regulating plant-soil feedback, which varies from positive to negative among plant species, remain uncertain. In a large-scale study involving 55 species and 550 populations of North American trees, the type of mycorrhizal association explained much of the variation in plant-soil feedbacks. In soil collected beneath conspecifics, arbuscular mycorrhizal trees experienced negative feedback, whereas ectomycorrhizal trees displayed positive feedback. Additionally, arbuscular mycorrhizal trees exhibited strong conspecific inhibition at multiple spatial scales, whereas ectomycorrhizal trees exhibited conspecific facilitation locally and less severe conspecific inhibition regionally. These results suggest that mycorrhizal type, through effects on plant-soil feedbacks, could be an important contributor to population regulation and community structure in temperate forests.


Ecology Letters | 2013

Increased competition does not lead to increased phylogenetic overdispersion in a native grassland

Jonathan A. Bennett; Eric G. Lamb; Jocelyn C. Hall; Warren M. Cardinal-McTeague; James F. Cahill

That competition is stronger among closely related species and leads to phylogenetic overdispersion is a common assumption in community ecology. However, tests of this assumption are rare and field-based experiments lacking. We tested the relationship between competition, the degree of relatedness, and overdispersion among plants experimentally and using a field survey in a native grassland. Relatedness did not affect competition, nor was competition associated with phylogenetic overdispersion. Further, there was only weak evidence for increased overdispersion at spatial scales where plants are likely to compete. These results challenge traditional theory, but are consistent with recent theories regarding the mechanisms of plant competition and its potential effect on phylogenetic structure. We suggest that specific conditions related to the form of competition and trait conservatism must be met for competition to cause phylogenetic overdispersion. Consequently, overdispersion as a result of competition is likely to be rare in natural communities.


Journal of Ecology | 2016

Fungal effects on plant–plant interactions contribute to grassland plant abundances: evidence from the field

Jonathan A. Bennett; James F. Cahill

1. Plant–fungal interactions can have strong effects on plant abundances, both through direct effects on plant performance and indirect effects on competition and facilitation. Most evidence linking fungi to plant abundances derives from direct fungal effects on initial growth, with little evidence linking fungal effects on plant–plant interactions in intact communities to plant abundances for any plant life-history stage. 2. We transplanted 4320 individuals belonging to 18 plant species into plots where we removed neighbouring vegetation and suppressed fungi using fungicide in a factorial design. We monitored plant survival and growth for 3 years, using these data to test whether fungi had net effects on how plant–plant interactions affected different plant life-history components (initial survival/growth, adult survival/growth). We then tested whether these indirect fungal effects or direct fungal effects on plant performance best explained plant commonness (frequency of occurrence) and local density (per cent cover). Finally, we measured differences in root-associated fungi following fungal suppression and associated these differences with fungal effects on plant performance. 3. Overall, fungi increased competitive effects on survival (i.e. lower survival with fungi intact), but reduced competitive effects on growth of adult plants (i.e. higher growth when fungi intact). Among the focal species, these indirect fungal effects increased survival for more common species relative to rarer species. However, indirect fungal effects on adult growth benefitted rarer species more than common species. Local plant densities were unassociated with indirect fungal effects, but were negatively associated with direct fungal effects on survival and adult growth. This suggests that fungi limit local dominance, thereby indirectly increasing the establishment of common species and the growth of rare species. 4. Synthesis. Using a variety of plant species and suppressing both fungi and neighbours, we show that fungi have net indirect effects, through plant–plant interactions, within intact plant communities. Variation among species in both direct and indirect fungal effects contributed to plant abundances, yet fungal effects did not consistently benefit either common or rare species. However, regardless of commonness, fungi directly reduced growth and survival for species with high local densities, consistent with plant–soil feedbacks limiting species dominance.


Conservation Biology | 2017

Applying the dark diversity concept to nature conservation

Rob J. Lewis; Francesco de Bello; Jonathan A. Bennett; Pavel Fibich; Genevieve E. Finerty; Lars Götzenberger; Inga Hiiesalu; Liis Kasari; Jan Lepš; Maria Májeková; Ondřej Mudrák; Kersti Riibak; Argo Ronk; Terezie Rychtecká; Alena Vítová; Meelis Pärtel

Linking diversity to biological processes is central for developing informed and effective conservation decisions. Unfortunately, observable patterns provide only a proportion of the information necessary for fully understanding the mechanisms and processes acting on a particular population or community. We suggest conservation managers use the often overlooked information relative to species absences and pay particular attention to dark diversity (i.e., a set of species that are absent from a site but that could disperse to and establish there, in other words, the absent portion of a habitat-specific species pool). Together with existing ecological metrics, concepts, and conservation tools, dark diversity can be used to complement and further develop conservation prioritization and management decisions through an understanding of biodiversity relativized by its potential (i.e., its species pool). Furthermore, through a detailed understanding of the population, community, and functional dark diversity, the restoration potential of degraded habitats can be more rigorously assessed and so to the likelihood of successful species invasions. We suggest the application of the dark diversity concept is currently an underappreciated source of information that is valuable for conservation applications ranging from macroscale conservation prioritization to more locally scaled restoration ecology and the management of invasive species.


New Phytologist | 2016

Macroecology of biodiversity: disentangling local and regional effects

Meelis Pärtel; Jonathan A. Bennett; Martin Zobel

Contents 404 I. 404 II. 404 III. 405 IV. 406 V. 407 VI. 408 409 References 409 SUMMARY: Macroecology of biodiversity disentangles local and regional drivers of biodiversity by exploring large-scale biodiversity relationships with environmental or biotic gradients, generalizing local biodiversity relationships across regions, or comparing biodiversity patterns among species groups. A macroecological perspective is also important at local scales: a full understanding of local biodiversity drivers, including human impact, demands that regional processes be taken into account. This requires knowledge of which species could inhabit a site (the species pool), including those that are currently absent (dark diversity). Macroecology of biodiversity is currently advancing quickly owing to an unprecedented accumulation of biodiversity data, new sampling techniques and analytical methods, all of which better equip us to face current and future challenges in ecology and biodiversity conservation.


Journal of Ecology | 2016

The reciprocal relationship between competition and intraspecific trait variation

Jonathan A. Bennett; Kersti Riibak; Riin Tamme; Rob J. Lewis; Meelis Pärtel

Summary 1.Trait differences among plants are expected to influence the outcome of competition; competition should be strongest between similar species (or individuals) under limiting similarity, and between dissimilar species within competitive hierarchies. These hypotheses are often used to infer competitive dynamics from trait patterns within communities. However, plant traits are frequently plastic in response to competition. This variation is poorly accounted for in trait based studies of competition and community assembly. 2.To explore the relationship between trait responses and competitive outcomes, we grew 15 species alone, in monoculture, and in mixture. We measured traits relating to leaf and root tissue morphology as well as biomass allocation and related competition induced changes in these traits to intra- and interspecific competition using multi-model inference. Additionally, we tested how traits from different competitive environments influenced potential community assembly inferences. 3.The competitive environment had large effects on species’ traits, although many effects were species-specific. Differences among species in how competition affected trait expression was linked to both intra- and interspecific competition, frequently affecting competitive hierarchies. Intraspecific competition was lower for species that limited competition-induced increases in root allocation and had less variability in this trait overall. Interspecific competition was lower for species with larger leaves and lower specific leaf area than their neighbours. Switching to more stress tolerant strategies by increasing root diameter and leaf tissue density also reduced competition. However, dissimilarity in root tissue density also minimized competition, consistent with limiting similarity affecting competitive outcomes. Moreover, changes in these traits were linked to changes in functional diversity, suggesting that competition affects functional diversity by affecting trait expression. 4.Synthesis – Both trait hierarchies and trait dissimilarity affect the outcome of competition by acting on different traits, although competition-induced changes in trait expression can alter the outcome. Moreover, the magnitude of these trait changes suggests that the source environment where plant traits are collected can affect the inferences drawn from trait patterns within communities. Combined, our results suggest that considering the effect of competition on trait expression is critical to understanding the relationship between traits and community assembly. This article is protected by copyright. All rights reserved.


PLOS ONE | 2012

Evaluating the Relationship between Competition and Productivity within a Native Grassland

Jonathan A. Bennett; James F. Cahill

Ideas about how plant competition varies with productivity are rooted in classic theories that predict either increasing (Grime) or invariant (Tilman) competition with increasing productivity. Both predictions have received experimental support, although a decade-old meta-analysis supports neither. Attempts to reconcile the conflicting predictions and evidence include: expanding the theory to include other conditions (e.g. stress gradient hypothesis), development of indices to differentiate either the ‘intensity’ or ‘importance’ of competition, a focus on resource supply and demand, and explicit recognition that both growth and survival may exhibit different relationships with productivity. To determine which of these theories accurately predict how competition varies with productivity within a native grassland site, we estimated competitive intensity and relative competitive importance using 22 species across the range of productivity naturally occurring within that site. Plant performance was measured as survival and size with and without neighbours and the local environment was quantified according to variability in standing crop, gross water supply, and net water supply. On average, neighbours weakly facilitated seedling survival, but strongly reduced seedling growth. For both seedling survival and growth, relative competitive importance and competitive intensity declined with some measure of productivity; neighbour effects on survival declined with standing crop, while effects on growth declined with gross water supply. These results add to the growing evidence that plant-plant interactions vary among life history components with different life history components contingent upon separate environmental factors. Although the range of productivity measured in this study was not large, our results do not support the theories of Grime or Tilman. However, our results are consistent with the meta-analysis and parts of other theories, although no single theory is capable of explaining the entirety of these results. This suggests that, at least in moderately productive grasslands, new theory needs to be developed.


Oecologia | 2012

Context dependence in foraging behaviour of Achillea millefolium

Justine Karst; Pamela R. Belter; Jonathan A. Bennett; James F. Cahill

Context-dependent foraging behaviour is acknowledged and well documented for a diversity of animals and conditions. The contextual determinants of plant foraging behaviour, however, are poorly understood. Plant roots encounter patchy distributions of nutrients and soil fungi. Both of these features affect root form and function, but how they interact to affect foraging behaviour is unknown. We extend the use of the marginal value theorem to make predictions about the foraging behaviour of roots, and test our predictions by manipulating soil resource distribution and inoculation by soil fungi. We measured plant movement as both distance roots travelled and time taken to grow through nutrient patches of varied quality. To do this, we grew Achillea millefolium in the centers of modified pots with a high-nutrient patch and a low-nutrient patch on either side of the plant (heterogeneous) or patch-free conditions (homogeneous). Fungal inoculation, but not resource distribution, altered the time it took roots to reach nutrient patches. When in nutrient patches, root growth decreased relative to homogeneous soils. However, this change in foraging behaviour was not contingent upon patch quality or fungal inoculation. Root system breadth was larger in homogeneous than in heterogeneous soils, until measures were influenced by pot edges. Overall, we find that root foraging behaviour is modified by resource heterogeneity but not fungal inoculation. We find support for predictions of the marginal value theorem that organisms travel faster through low-quality than through high-quality environments, with the caveat that roots respond to nutrient patches per se rather than the quality of those patches.


Ecology and Evolution | 2017

Predicting species establishment using absent species and functional neighborhoods

Jonathan A. Bennett; Meelis Pärtel

Abstract Species establishment within a community depends on their interactions with the local environment and resident community. Such environmental and biotic filtering is frequently inferred from functional trait and phylogenetic patterns within communities; these patterns may also predict which additional species can establish. However, differentiating between environmental and biotic filtering can be challenging, which may complicate establishment predictions. Creating a habitat‐specific species pool by identifying which absent species within the region can establish in the focal habitat allows us to isolate biotic filtering by modeling dissimilarity between the observed and biotically excluded species able to pass environmental filters. Similarly, modeling the dissimilarity between the habitat‐specific species pool and the environmentally excluded species within the region can isolate local environmental filters. Combined, these models identify potentially successful phenotypes and why certain phenotypes were unsuccessful. Here, we present a framework that uses the functional dissimilarity among these groups in logistic models to predict establishment of additional species. This approach can use multivariate trait distances and phylogenetic information, but is most powerful when using individual traits and their interactions. It also requires an appropriate distance‐based dissimilarity measure, yet the two most commonly used indices, nearest neighbor (one species) and mean pairwise (all species) distances, may inaccurately predict establishment. By iteratively increasing the number of species used to measure dissimilarity, a functional neighborhood can be chosen that maximizes the detection of underlying trait patterns. We tested this framework using two seed addition experiments in calcareous grasslands. Although the functional neighborhood size that best fits the communitys trait structure depended on the type of filtering considered, selecting these functional neighborhood sizes allowed our framework to predict up to 50% of the variation in actual establishment from seed. These results indicate that the proposed framework may be a powerful tool for studying and predicting species establishment.

Collaboration


Dive into the Jonathan A. Bennett's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jason Pither

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Ensing

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Heath W. Garris

Thompson Rivers University

View shared research outputs
Top Co-Authors

Avatar

Hugh A. L. Henry

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge