Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan A. Kirk is active.

Publication


Featured researches published by Jonathan A. Kirk.


Nature | 2015

Phosphodiesterase 9A controls nitric-oxide-independent cGMP and hypertrophic heart disease.

Dong I. Lee; Guangshuo Zhu; Takashi Sasaki; Gun Sik Cho; Nazha Hamdani; Ronald J. Holewinski; Su Hyun Jo; Thomas Danner; Manling Zhang; Peter P. Rainer; Djahida Bedja; Jonathan A. Kirk; Mark J. Ranek; Wolfgang R. Dostmann; Chulan Kwon; Kenneth B. Margulies; Jennifer E. Van Eyk; Walter J. Paulus; Eiki Takimoto; David A. Kass

Cyclic guanosine monophosphate (cGMP) is a second messenger molecule that transduces nitric-oxide- and natriuretic-peptide-coupled signalling, stimulating phosphorylation changes by protein kinase G. Enhancing cGMP synthesis or blocking its degradation by phosphodiesterase type 5A (PDE5A) protects against cardiovascular disease. However, cGMP stimulation alone is limited by counter-adaptions including PDE upregulation. Furthermore, although PDE5A regulates nitric-oxide-generated cGMP, nitric oxide signalling is often depressed by heart disease. PDEs controlling natriuretic-peptide-coupled cGMP remain uncertain. Here we show that cGMP-selective PDE9A (refs 7, 8) is expressed in the mammalian heart, including humans, and is upregulated by hypertrophy and cardiac failure. PDE9A regulates natriuretic-peptide- rather than nitric-oxide-stimulated cGMP in heart myocytes and muscle, and its genetic or selective pharmacological inhibition protects against pathological responses to neurohormones, and sustained pressure-overload stress. PDE9A inhibition reverses pre-established heart disease independent of nitric oxide synthase (NOS) activity, whereas PDE5A inhibition requires active NOS. Transcription factor activation and phosphoproteome analyses of myocytes with each PDE selectively inhibited reveals substantial differential targeting, with phosphorylation changes from PDE5A inhibition being more sensitive to NOS activation. Thus, unlike PDE5A, PDE9A can regulate cGMP signalling independent of the nitric oxide pathway, and its role in stress-induced heart disease suggests potential as a therapeutic target.


Circulation | 2012

Multiple Reaction Monitoring to Identify Site-Specific Troponin I Phosphorylated Residues in the Failing Human Heart

Pingbo Zhang; Jonathan A. Kirk; Weihua Ji; Cristobal G. dos Remedios; David A. Kass; Jennifer E. Van Eyk; Anne M. Murphy

Background— Human cardiac troponin I is known to be phosphorylated at multiple amino acid residues by several kinases. Advances in mass spectrometry allow sensitive detection of known and novel phosphorylation sites and measurement of the level of phosphorylation simultaneously at each site in myocardial samples. Methods and Results— On the basis of in silico prediction and liquid chromatography/mass spectrometry data, 14 phosphorylation sites on cardiac troponin I, including 6 novel residues (S4, S5, Y25, T50, T180, S198), were assessed in explanted hearts from end-stage heart failure transplantation patients with ischemic heart disease or idiopathic dilated cardiomyopathy and compared with samples obtained from nonfailing donor hearts (n=10 per group). Thirty mass spectrometry–based multiple reaction monitoring quantitative tryptic peptide assays were developed for each phosphorylatable and corresponding nonphosphorylated site. The results show that in heart failure there is a decrease in the extent of phosphorylation of the known protein kinase A sites (S22, S23) and other newly discovered phosphorylation sites located in the N-terminal extension of cardiac troponin I (S4, S5, Y25), an increase in phosphorylation of the protein kinase C sites (S41, S43, T142), and an increase in phosphorylation of the IT-arm domain residues (S76, T77) and C-terminal domain novel phosphorylation sites of cardiac troponin I (S165, T180, S198). In a canine dyssynchronous heart failure model, enhanced phosphorylation at 3 novel sites was found to decline toward control after resynchronization therapy. Conclusions— Selective, functionally significant phosphorylation alterations occurred on individual residues of cardiac troponin I in heart failure, likely reflecting an imbalance in kinase/phosphatase activity. Such changes can be reversed by cardiac resynchronization.


Circulation Research | 2013

Electromechanical Dyssynchrony and Resynchronization of the Failing Heart

Jonathan A. Kirk; David A. Kass

Patients with heart failure and decreased function frequently develop discoordinate contraction because of electric activation delay. Often termed dyssynchrony, this further decreases systolic function and chamber efficiency and worsens morbidity and mortality. In the mid- 1990s, a pacemaker-based treatment termed cardiac resynchronization therapy (CRT) was developed to restore mechanical synchrony by electrically activating both right and left sides of the heart. It is a major therapeutic advance for the new millennium. Acute chamber effects of CRT include increased cardiac output and mechanical efficiency and reduced mitral regurgitation, whereas reduction in chamber volumes ensues more chronically. Patient candidates for CRT have a prolonged QRS duration and discoordinate wall motion, although other factors may also be important because ≈30% of such selected subjects do not respond to the treatment. In contrast to existing pharmacological inotropes, CRT both acutely and chronically increases cardiac systolic function and work, yet it also reduces long-term mortality. Recent studies reveal unique molecular and cellular changes from CRT that may also contribute to this success. Heart failure with dyssynchrony displays decreased myocyte and myofilament function, calcium handling, &bgr;-adrenergic responsiveness, mitochondrial ATP synthase activity, cell survival signaling, and other changes. CRT reverses many of these abnormalities often by triggering entirely new pathways. In this review, we discuss chamber, circulatory, and basic myocardial effects of dyssynchrony and CRT in the failing heart, and we highlight new research aiming to better target and implement CRT, as well as leverage its molecular effects.


Circulation Research | 2011

Thrombospondin-4 Is Required for Stretch-Mediated Contractility Augmentation in Cardiac Muscle

Oscar H. Cingolani; Jonathan A. Kirk; Kinya Seo; Norimichi Koitabashi; Dong-ik Lee; Genaro A. Ramirez-Correa; Djahida Bedja; Andreas S. Barth; An L. Moens; David A. Kass

Rationale: One of the physiological mechanisms by which the heart adapts to a rise in blood pressure is by augmenting myocyte stretch-mediated intracellular calcium, with a subsequent increase in contractility. This slow force response was first described over a century ago and has long been considered compensatory, but its underlying mechanisms and link to chronic adaptations remain uncertain. Because levels of the matricellular protein thrombospondin-4 (TSP4) rapidly rise in hypertension and are elevated in cardiac stress overload and heart failure, we hypothesized that TSP4 is involved in this adaptive mechanism. Objective: To determine the mechano-transductive role that TSP4 plays in cardiac regulation to stress. Methods and results: In mice lacking TSP4 (Tsp4−/−), hearts failed to acutely augment contractility or activate stretch-response pathways (ERK1/2 and Akt) on exposure to acute pressure overload. Sustained pressure overload rapidly led to greater chamber dilation, reduced function, and increased heart mass. Unlike controls, Tsp4−/− cardiac trabeculae failed to enhance contractility and cellular calcium after a stretch. However, the contractility response was restored in Tsp4−/− muscle incubated with recombinant TSP4. Isolated Tsp4−/− myocytes responded normally to stretch, identifying a key role of matrix-myocyte interaction for TSP4 contractile modulation. Conclusion: These results identify TSP4 as myocyte-interstitial mechano-signaling molecule central to adaptive cardiac contractile responses to acute stress, which appears to play a crucial role in the transition to chronic cardiac dilatation and failure.


Circulation Research | 2009

Left Ventricular and Myocardial Function in Mice Expressing Constitutively Pseudophosphorylated Cardiac Troponin I

Jonathan A. Kirk; Guy A. MacGowan; Caroline Evans; Stephen H Smith; Chad M. Warren; Ranganath Mamidi; Murali Chandra; Alexandre F.R. Stewart; R. John Solaro; Sanjeev G. Shroff

Rationale: Protein kinase (PK)C-induced phosphorylation of cardiac troponin (cTn)I has been shown to regulate cardiac contraction. Objective: Characterize functional effects of increased PKC-induced cTnI phosphorylation and identify underlying mechanisms using a transgenic mouse model (cTnIPKC-P) expressing mutant cTnI (S43E, S45E, T144E). Methods and Results: Two-dimensional gel analysis showed 7.2±0.5% replacement of endogenous cTnI with the mutant form. Experiments included: mechanical measurements (perfused isolated hearts, isolated papillary muscles, and skinned fiber preparations), biochemical and molecular biological measurements, and a mathematical model–based analysis for integrative interpretation. Compared to wild-type mice, cTnIPKC-P mice exhibited negative inotropy in isolated hearts (14% decrease in peak developed pressure), papillary muscles (53% decrease in maximum developed force), and skinned fibers (14% decrease in maximally activated force, Fmax). Additionally, cTnIPKC-P mice exhibited slowed relaxation in both isolated hearts and intact papillary muscles. The cTnIPKC-P mice showed no differences in calcium sensitivity, cooperativity, steady-state force-MgATPase relationship, calcium transient (amplitude and relaxation), or baseline phosphorylation of other myofilamental proteins. The model-based analysis revealed that experimental observations in cTnIPKC-P mice could be reproduced by 2 simultaneous perturbations: a decrease in the rate of cross-bridge formation and an increase in calcium-independent persistence of the myofilament active state. Conclusions: A modest increase in PKC-induced cTnI phosphorylation (≈7%) can significantly alter cardiac muscle contraction: negative inotropy via decreased cross-bridge formation and negative lusitropy via persistence of myofilament active state. Based on our data and data from the literature we speculate that effects of PKC-mediated cTnI phosphorylation are site-specific (S43/S45 versus T144).


Journal of Clinical Investigation | 2014

Cardiac resynchronization sensitizes the sarcomere to calcium by reactivating GSK-3β.

Jonathan A. Kirk; Ronald J. Holewinski; Viola Kooij; Giulio Agnetti; Richard S. Tunin; Namthip Witayavanitkul; Pieter P. de Tombe; Wei Dong Gao; Jennifer E. Van Eyk; David A. Kass

Cardiac resynchronization therapy (CRT), the application of biventricular stimulation to correct discoordinate contraction, is the only heart failure treatment that enhances acute and chronic systolic function, increases cardiac work, and reduces mortality. Resting myocyte function also increases after CRT despite only modest improvement in calcium transients, suggesting that CRT may enhance myofilament calcium responsiveness. To test this hypothesis, we examined adult dogs subjected to tachypacing-induced heart failure for 6 weeks, concurrent with ventricular dyssynchrony (HF(dys)) or CRT. Myofilament force-calcium relationships were measured in skinned trabeculae and/or myocytes. Compared with control, maximal calcium-activated force and calcium sensitivity declined globally in HF(dys); however, CRT restored both. Phosphatase PP1 induced calcium desensitization in control and CRT-treated cells, while HF(dys) cells were unaffected, implying that CRT enhances myofilament phosphorylation. Proteomics revealed phosphorylation sites on Z-disk and M-band proteins, which were predicted to be targets of glycogen synthase kinase-3β (GSK-3β). We found that GSK-3β was deactivated in HF(dys) and reactivated by CRT. Mass spectrometry of myofilament proteins from HF(dys) animals incubated with GSK-3β confirmed GSK-3β–dependent phosphorylation at many of the same sites observed with CRT. GSK-3β restored calcium sensitivity in HF(dys), but did not affect control or CRT cells. These data indicate that CRT improves calcium responsiveness of myofilaments following HF(dys) through GSK-3β reactivation, identifying a therapeutic approach to enhancing contractile function


Journal of Applied Physiology | 2009

Chronic intermittent hypoxia increases left ventricular contractility in C57BL/6J mice

Jahan Naghshin; Kenneth R. McGaffin; William Witham; Michael A. Mathier; Lia C. Romano; Steven H. Smith; Andrejz M. Janczewski; Jonathan A. Kirk; Sanjeev G. Shroff; Christopher P. O'Donnell

Intermittent hypoxia (IH) commonly occurs in patients with obstructive sleep apnea and can cause a wide range of pathology, including reduced left ventricular (LV) ejection fraction in rats as determined by echocardiography, in rodent models. We utilized echocardiography and pressure-volume (PV) loop analyses to determine whether LV contractility was decreased in inbred C57BL/6J mice exposed to IH and whether blockade of beta-adrenergic receptors modified the response to hypoxia. Adult male 9- to 10-wk-old mice were exposed to 4 wk of IH (nadir inspired O(2) 5-6% at 60 cycles/h for 12 h during the light period) or intermittent air (IA) as control. A second group of animals were exposed to the same regimen of IH or IA, but in the presence of nonspecific beta-blockade with propranolol. Cardiac function was assessed by echocardiography and PV loop analyses, and mRNA and protein expression in ventricular homogenates was determined. Contrary to our expectations, we found with PV loop analyses that LV ejection fraction (63.4 +/- 3.5 vs. 50.5 +/- 2.6%, P = 0.015) and other measures of LV contractility were increased in IH-exposed animals compared with IA controls. There were no changes in contractile proteins, atrial natriuretic peptide levels, LV posterior wall thickness, or heart weight with IH exposure. However, cAMP levels were elevated after IH, and propranolol administration attenuated the increase in LV contractility induced by IH exposure. We conclude that, contrary to our hypothesis, 4 wk of IH exposure in C57BL/6J mice causes an increase in LV contractility that occurs independent of ventricular hypertrophy and is, in part, mediated by activation of cardiac beta-adrenergic pathways.


Cardiovascular Research | 2014

Desmin modifications associate with amyloid-like oligomers deposition in heart failure

Giulio Agnetti; Victoria L. Halperin; Jonathan A. Kirk; Khalid Chakir; Yurong Guo; Linda Lund; Francesco Nicolini; Tiziano Gherli; Carlo Guarnieri; Claudio M. Caldarera; Gordon F. Tomaselli; David A. Kass; Jennifer E. Van Eyk

AIMS The ultimate cause of heart failure (HF) is not known to date. The cytoskeletal protein desmin is differentially modified and forms amyloid-like oligomers in HF. We postulated that desmin post-translational modifications (PTMs) could drive aberrant desmin aggregation in HF. Therefore, we identified these PTMs and investigated their impact on desmin amyloidogenicity in human and experimental HF. METHODS AND RESULTS We detected increased levels of selectively phosphorylated and cleaved desmin in a canine pacing model of dyssynchronous HF (DHF) compared with either controls or animals treated with cardiac resynchronization therapy (CRT). This unique animal model combines clinically relevant features with the possibility of a partly rescued phenotype. We confirmed analogous changes in desmin modifications in human HF and identified two phosphorylation sites within a glycogen synthase kinase 3 (GSK3) consensus sequence. Desmin-positive oligomers were also increased in DHF hearts compared with controls. Their amyloid properties were decreased by treatment with CRT or an anti-amyloid small molecule. Finally, we confirmed GSK3s involvement with desmin phosphorylation using an in vitro model. CONCLUSIONS Based on these findings, we postulate a new mechanism of cardiac toxicity based on the PTM-driven accumulation of desmin amyloid-like oligomers. Phosphorylation and cleavage as well as oligomers formation are reduced by treatment (CRT) indicating a relationship between the three. Finally, the decrease of desmin amyloid-like oligomers with CRT or small molecules points both to a general mechanism of HF based on desmin toxicity that is independent of protein mutations and to novel potential therapies.


Cardiovascular Research | 2015

Citrullination of myofilament proteins in heart failure

Justyna Fert-Bober; John T. Giles; Ronald J. Holewinski; Jonathan A. Kirk; Helge Uhrigshardt; Erin L. Crowgey; Felipe Andrade; Clifton O. Bingham; Jin Kyun Park; Marc K. Halushka; David A. Kass; Joan M. Bathon; Jennifer E. Van Eyk

AIMS Citrullination, the post-translational conversion of arginine to citrulline by the enzyme family of peptidylarginine deiminases (PADs), is associated with several diseases, and specific citrullinated proteins have been shown to alter function while others act as auto-antigens. In this study, we identified citrullinated proteins in human myocardial samples, from healthy and heart failure patients, and determined several potential functional consequences. Further we investigated PAD isoform cell-specific expression in the heart. METHODS AND RESULTS A citrullination-targeted proteomic strategy using data-independent (SWATH) acquisition method was used to identify the modified cardiac proteins. Citrullinated-induced sarcomeric proteins were validated using two-dimensional gel electrophoresis and investigated using biochemical and functional assays. Myocardial PAD isoforms were confirmed by RT-PCR with PAD2 being the major isoform in myocytes. In total, 304 citrullinated sites were identified that map to 145 proteins among the three study groups: normal, ischaemia, and dilated cardiomyopathy. Citrullination of myosin (using HMM fragment) decreased its intrinsic ATPase activity and inhibited the acto-HMM-ATPase activity. Citrullinated TM resulted in stronger F-actin binding and inhibited the acto-HMM-ATPase activity. Citrullinated TnI did not alter the binding to F-actin or acto-HMM-ATPase activity. Overall, citrullination of sarcomeric proteins caused a decrease in Ca(2+) sensitivity in skinned cardiomyocytes, with no change in maximal calcium-activated force or hill coefficient. CONCLUSION Citrullination unique to the cardiac proteome was identified. Our data indicate important structural and functional alterations to the cardiac sarcomere and the contribution of protein citrullination to this process.


BJUI | 2012

Sunitinib causes dose-dependent negative functional effects on myocardium and cardiomyocytes.

Peter P. Rainer; Bernhard Doleschal; Jonathan A. Kirk; Vidhya Sivakumaran; Zora Saad; Klaus Groschner; Heinrich Maechler; Gerald Hoefler; Thomas Bauernhofer; Hellmut Samonigg; Georg C. Hutterer; David A. Kass; Burkert Pieske; Dirk Von Lewinski; Martin Pichler

Study Type – Aetiology (case control)

Collaboration


Dive into the Jonathan A. Kirk's collaboration.

Top Co-Authors

Avatar

David A. Kass

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Oscar H. Cingolani

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Khalid Chakir

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Mark J. Ranek

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Caroline Evans

University of Pittsburgh

View shared research outputs
Researchain Logo
Decentralizing Knowledge