Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan A. R. Gordon is active.

Publication


Featured researches published by Jonathan A. R. Gordon.


Proceedings of the National Academy of Sciences of the United States of America | 2010

A network connecting Runx2, SATB2, and the miR-23a∼27a∼24-2 cluster regulates the osteoblast differentiation program

Mohammad Q. Hassan; Jonathan A. R. Gordon; Carlo M. Croce; Andre J. Van Wijnen; Janet L. Stein; Gary S. Stein; Jane B. Lian

Induced osteogenesis includes a program of microRNAs (miRs) to repress the translation of genes that act as inhibitors of bone formation. How expression of bone-related miRs is regulated remains a compelling question. Here we report that Runx2, a transcription factor essential for osteoblastogenesis, negatively regulates expression of the miR cluster 23a∼27a∼24-2. Overexpression, reporter, and chromatin immunoprecipitation assays established the presence of a functional Runx binding element that represses expression of these miRs. Consistent with this finding, exogenous expression of each of the miRs suppressed osteoblast differentiation, whereas antagomirs increased bone marker expression. The biological significance of Runx2 repression of this miR cluster is that each miR directly targets the 3′ UTR of SATB2, which is known to synergize with Runx2 to facilitate bone formation. The findings suggest Runx2-negative regulation of multiple miRs by a feed-forward mechanism to cause derepression of SATB2 to promote differentiation. We find also that miR-23a represses Runx2 in the terminally differentiated osteocyte, representing a feedback mechanism to attenuate osteoblast maturation. We provide direct evidence for an interdependent relationship among transcriptional inhibition of the miR cluster by Runx2, translational repression of Runx2 and of SATB2 by the cluster miRs during progression of osteoblast differentiation. Furthermore, miR cluster gain of function (i.e., inhibition of osteogenesis) is rescued by the exogenous expression of SATB2. Taken together, we have established a regulatory network with a central role for the miR cluster 23a∼27a∼24-2 in both progression and maintenance of the osteocyte phenotype.


Journal of Biological Chemistry | 2012

miR-218 Directs a Wnt Signaling Circuit to Promote Differentiation of Osteoblasts and Osteomimicry of Metastatic Cancer Cells

Mohammad Q. Hassan; Yukiko Maeda; Hanna Taipaleenmäki; Weibing Zhang; Mohammad Jafferji; Jonathan A. R. Gordon; Zhaoyong Li; Carlo M. Croce; Andre J. Van Wijnen; Janet L. Stein; Gary S. Stein; Jane B. Lian

Background: MicroRNAs control cell signaling during osteoblast differentiation. Results: miR-218, which is highly expressed in osteoblasts and cancer cells metastatic to bone, targets three inhibitors of Wnt signaling, Sclerostin, Dickkopf2, and secreted frizzled-related protein2. Conclusion: miR-218 promotes differentiation of normal osteoblast and the osteomimetic bone-homing properties of tumor cells. Significance: miR-218 may be a universal stimulator of Wnt-signaling during bone development and cancer progression. MicroRNAs (miRNAs) negatively and post-transcriptionally regulate expression of multiple target genes to support anabolic pathways for bone formation. Here, we show that miR-218 is induced during osteoblast differentiation and has potent osteogenic properties. miR-218 promotes commitment and differentiation of bone marrow stromal cells by activating a positive Wnt signaling loop. In a feed forward mechanism, miR-218 stimulates the Wnt pathway by down-regulating three Wnt signaling inhibitors during the process of osteogenesis: Sclerostin (SOST), Dickkopf2 (DKK2), and secreted frizzled-related protein2 (SFRP2). In turn, miR-218 expression is up-regulated in response to stimulated Wnt signaling and functionally drives Wnt-related transcription and osteoblast differentiation, thereby creating a positive feedback loop. Furthermore, in metastatic breast cancer cells but not in normal mammary epithelial cells, miR-218 enhances Wnt activity and abnormal expression of osteoblastic genes (osteomimicry) that contribute to homing and growth of cells metastatic to bone. Thus, miR-218/Wnt signaling circuit amplifies both the osteoblast phenotype and osteomimicry-related tumor activity.


Journal of Biological Chemistry | 2012

Control of Mesenchymal Lineage Progression by MicroRNAs Targeting Skeletal Gene Regulators Trps1 and Runx2

Ying Zhang; Ronglin Xie; Jonathan A. R. Gordon; Kimberly T. LeBlanc; Janet L. Stein; Jane B. Lian; Andre J. Van Wijnen; Gary S. Stein

Background: MicroRNAs control cell growth and differentiation in part by inhibiting transcription factor expression. Results: Specific microRNAs in mesenchymal cells block osteoblastic and chondrocytic but not adipocytic cell fate. Conclusion: Select microRNA-transcription factor networks control mesenchymal cell fate. Significance: MicroRNAs can be used to manipulate stem cells for musculoskeletal tissue regeneration. Multiple microRNAs (miRNAs) that target the osteogenic Runt-related transcription factor 2 (RUNX2) define an interrelated network of miRNAs that control osteoblastogenesis. We addressed whether these miRNAs have functional targets beyond RUNX2 that coregulate skeletal development. Here, we find that seven RUNX2-targeting miRNAs (miR-23a, miR-30c, miR-34c, miR-133a, miR-135a, miR-205, and miR-217) also regulate the chondrogenic GATA transcription factor tricho-rhino-phalangeal syndrome I (TRPS1). Although the efficacy of each miRNA to target RUNX2 or TRPS1 differs in osteoblasts and chondrocytes, each effectively blocks maturation of precommitted osteoblasts and chondrocytes. Furthermore, these miRNAs can redirect mesenchymal stem cells into adipogenic cell fate with concomitant up-regulation of key lineage-specific transcription factors. Thus, a program of multiple miRNAs controls mesenchymal lineage progression by selectively blocking differentiation of osteoblasts and chondrocytes to control skeletal development.


Genome Biology | 2014

Genomic occupancy of Runx2 with global expression profiling identifies a novel dimension to control of osteoblastogenesis.

Hai Wu; Troy W. Whitfield; Jonathan A. R. Gordon; Jason R. Dobson; Phillip W. L. Tai; Andre J. van Wijnen; Janet L. Stein; Gary S. Stein; Jane B. Lian

BackgroundOsteogenesis is a highly regulated developmental process and continues during the turnover and repair of mature bone. Runx2, the master regulator of osteoblastogenesis, directs a transcriptional program essential for bone formation through genetic and epigenetic mechanisms. While individual Runx2 gene targets have been identified, further insights into the broad spectrum of Runx2 functions required for osteogenesis are needed.ResultsBy performing genome-wide characterization of Runx2 binding at the three major stages of osteoblast differentiation - proliferation, matrix deposition and mineralization - we identify Runx2-dependent regulatory networks driving bone formation. Using chromatin immunoprecipitation followed by high-throughput sequencing over the course of these stages, we identify approximately 80,000 significantly enriched regions of Runx2 binding throughout the mouse genome. These binding events exhibit distinct patterns during osteogenesis, and are associated with proximal promoters and also non-promoter regions: upstream, introns, exons, transcription termination site regions, and intergenic regions. These peaks were partitioned into clusters that are associated with genes in complex biological processes that support bone formation. Using Affymetrix expression profiling of differentiating osteoblasts depleted of Runx2, we identify novel Runx2 targets including Ezh2, a critical epigenetic regulator; Crabp2, a retinoic acid signaling component; Adamts4 and Tnfrsf19, two remodelers of the extracellular matrix. We demonstrate by luciferase assays that these novel biological targets are regulated by Runx2 occupancy at non-promoter regions.ConclusionsOur data establish that Runx2 interactions with chromatin across the genome reveal novel genes, pathways and transcriptional mechanisms that contribute to the regulation of osteoblastogenesis.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Posttranslational regulation impacts the fate of duplicated genes

Grigoris D. Amoutzias; Ying He; Jonathan A. R. Gordon; Dimitris Mossialos; Stephen G. Oliver; Yves Van de Peer

Gene and genome duplications create novel genetic material on which evolution can work and have therefore been recognized as a major source of innovation for many eukaryotic lineages. Following duplication, the most likely fate is gene loss; however, a considerable fraction of duplicated genes survive. Not all genes have the same probability of survival, but it is not fully understood what evolutionary forces determine the pattern of gene retention. Here, we use genome sequence data as well as large-scale phosphoproteomics data from the baker’s yeast Saccharomyces cerevisiae, which underwent a whole-genome duplication ∼100 mya, and show that the number of phosphorylation sites on the proteins they encode is a major determinant of gene retention. Protein phosphorylation motifs are short amino acid sequences that are usually embedded within unstructured and rapidly evolving protein regions. Reciprocal loss of those ancestral sites and the gain of new ones are major drivers in the retention of the two surviving duplicates and in their acquisition of distinct functions. This way, small changes in the sequences of unstructured regions in proteins can contribute to the rapid rewiring and adaptation of regulatory networks.


Molecular and Cellular Biology | 2010

Pbx1 represses osteoblastogenesis by blocking Hoxa10-mediated recruitment of chromatin remodeling factors

Jonathan A. R. Gordon; Mohammad Q. Hassan; Martin A. Montecino; Andre J. Van Wijnen; Gary S. Stein; Janet L. Stein; Jane B. Lian

ABSTRACT Abdominal-class homeodomain-containing (Hox) factors form multimeric complexes with TALE-class homeodomain proteins (Pbx, Meis) to regulate tissue morphogenesis and skeletal development. Here we have established that Pbx1 negatively regulates Hoxa10-mediated gene transcription in mesenchymal cells and identified components of a Pbx1 complex associated with genes in osteoblasts. Expression of Pbx1 impaired osteogenic commitment of C3H10T1/2 multipotent cells and differentiation of MC3T3-E1 preosteoblasts. Conversely, targeted depletion of Pbx1 by short hairpin RNA (shRNA) increased expression of osteoblast-related genes. Studies using wild-type and mutated osteocalcin and Bsp promoters revealed that Pbx1 acts through a Pbx-binding site that is required to attenuate gene activation by Hoxa10. Chromatin-associated Pbx1 and Hoxa10 were present at osteoblast-related gene promoters preceding gene expression, but only Hoxa10 was associated with these promoters during transcription. Our results show that Pbx1 is associated with histone deacetylases normally linked with chromatin inactivation. Loss of Pbx1 from osteoblast promoters in differentiated osteoblasts was associated with increased histone acetylation and CBP/p300 recruitment, as well as decreased H3K9 methylation. We propose that Pbx1 plays a central role in attenuating the ability of Hoxa10 to activate osteoblast-related genes in order to establish temporal regulation of gene expression during osteogenesis.


Journal of Cellular Physiology | 2015

Could lncRNAs be the Missing Links in Control of Mesenchymal Stem Cell Differentiation

Coralee E. Tye; Jonathan A. R. Gordon; Lori A. Martin-Buley; Janet L. Stein; Jane B. Lian; Gary S. Stein

Long suspected, recently recognized, and increasingly studied, non protein‐coding RNAs (ncRNAs) are emerging as key drivers of biological control and pathology. Since their discovery in 1993, microRNAs (miRNAs) have been the subject of intense research focus and investigations have revealed striking findings, establishing that these molecules can exert a substantial level of biological control in numerous tissues. More recently, long ncRNAs (lncRNAs), the lesser‐studied siblings of miRNA, have been suggested to have a similar robust role in developmental and adult tissue regulation. Mesenchymal stem cells (MSCs) are an important source of multipotent cells for normal and therapeutic tissue repair. Much is known about the critical role of miRNAs in biogenesis and differentiation of MSCs however; recent studies have suggested lncRNAs may play an equally important role in the regulation of these cells. Here we highlight the role of lncRNAs in the regulation of mesenchymal stem cell lineages including adipocytes, chondrocytes, myoblasts, and osteoblasts. In addition, the potential for these noncoding RNAs to be used as biomarkers for disease or therapeutic targets is also discussed. J. Cell. Physiol. 230: 526–534, 2015.


Cells Tissues Organs | 2009

Molecular Switches Involving Homeodomain Proteins, HOXA10 and RUNX2 Regulate Osteoblastogenesis

Mohammad Q. Hassan; Jonathan A. R. Gordon; Andre J. Van Wijnen; Martin A. Montecino; Janet L. Stein; Gary S. Stein; Jane B. Lian

The osteoinductive BMP2 signal facilitates commitment to the osteoblast phenotype by inducing several classes of early response genes. Among these are bone-related HOX factors, homeodomain, RUNX and OSTERIX proteins. Here we demonstrate molecular events among BMP2-induced transcription factors that constitute a network of molecular switches on promoters of bone-related genes to coordinate their temporal expression during cellular differentiation. Our studies provide evidence for (1) selective association of HOXA10, MSX2, DLX3 and DLX5 homeodomain transcription factors on Runx2 and OC genes at stages of osteoblast maturation as well as (2) participation of these factors with RUNX2 in chromatin remodeling of bone-specific genes for repression, activation and attenuation of transcription. These findings reveal the requirement for multiple levels of control for the appropriate timing of osteoblast-related gene expression.


Bone | 2015

Chromatin modifiers and histone modifications in bone formation, regeneration, and therapeutic intervention for bone-related disease

Jonathan A. R. Gordon; Janet L. Stein; Jennifer J. Westendorf; Andre J. van Wijnen

Post-translational modifications of chromatin such as DNA methylation and different types of histone acetylation, methylation and phosphorylation are well-appreciated epigenetic mechanisms that confer information to progeny cells during lineage commitment. These distinct epigenetic modifications have defined roles in bone, development, tissue regeneration, cell commitment and differentiation, as well as disease etiologies. In this review, we discuss the role of these chromatin modifications and the enzymes regulating these marks (methyltransferases, demethylases, acetyltransferases, and deacetylases) in progenitor cells, osteoblasts and bone-related cells. In addition, the clinical relevance of deregulated histone modifications and enzymes as well as current and potential therapeutic interventions targeting chromatin modifiers are addressed.


Cells Tissues Organs | 2011

Epigenetic regulation of early osteogenesis and mineralized tissue formation by a HOXA10-PBX1-associated complex

Jonathan A. R. Gordon; Mohammad Q. Hassan; Matthew Koss; Martin A. Montecino; Licia Selleri; Andre J. Van Wijnen; Janet L. Stein; Gary S. Stein; Jane B. Lian

Homeodomain-containing (HOX) factors such as the abdominal class homeodomain protein HOXA10 and the TALE-family protein PBX1 form coregulatory complexes and are potent transcriptional and epigenetic regulators of tissue morphogenesis. We have identified that HOXA10 and PBX1 are expressed in osteoprogenitors; however, their role in osteogenesis has not been established. To determine the mechanism of HOXA10-PBX-mediated regulation of osteoblast commitment and the related gene expression, PBX1 or HOX10 were depleted (shRNA or genetic deletion, respectively) or exogenously expressed in C3H10T1/2, bone marrow stromal progenitors, and MC3T3-E1 (preosteoblast) cells. Overexpression of HOXA10 increased the expression of osteoblast-related genes, osteoblast differentiation and mineralization; expression of PBX1 impaired osteogenic commitment of pluripotent cells and the differentiation of osteoblasts. In contrast, the targeted depletion of PBX1 by shRNA increased the expression of bone marker genes (osterix, alkaline phosphatase, BSP, and osteocalcin). Chromatin-associated PBX1 and HOXA10 were present at osteoblast-related gene promoters preceding gene expression, but PBX1 was absent from promoters during the transcription of bone-related genes, including osterix (Osx). Further, PBX1 complexes were associated with histone deacetylases normally linked with chromatin inactivation. Loss of PBX1 but not of HOXA10 from the Osx promoter was associated with increases in the recruitment of histone acetylases (p300), as well as decreased H3K9 methylation, reflecting transcriptional activation. We propose PBX1 plays a central role in attenuating the activity of HOXA10 as an activator of osteoblast-related genes and functions to establish the proper timing of gene expression during osteogenesis, resulting in proper matrix maturation and mineral deposition in differentiated osteoblasts.

Collaboration


Dive into the Jonathan A. R. Gordon's collaboration.

Top Co-Authors

Avatar

Gary S. Stein

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andre J. Van Wijnen

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mohammad Q. Hassan

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Troy W. Whitfield

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge