Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan B. Baell is active.

Publication


Featured researches published by Jonathan B. Baell.


Journal of Medicinal Chemistry | 2010

New Substructure Filters for Removal of Pan Assay Interference Compounds (PAINS) from Screening Libraries and for Their Exclusion in Bioassays

Jonathan B. Baell; Georgina A. Holloway

This report describes a number of substructural features which can help to identify compounds that appear as frequent hitters (promiscuous compounds) in many biochemical high throughput screens. The compounds identified by such substructural features are not recognized by filters commonly used to identify reactive compounds. Even though these substructural features were identified using only one assay detection technology, such compounds have been reported to be active from many different assays. In fact, these compounds are increasingly prevalent in the literature as potential starting points for further exploration, whereas they may not be.


Nature | 2014

Chemistry: Chemical con artists foil drug discovery

Jonathan B. Baell; Michael A. Walters

Academic researchers, drawn into drug discovery without appropriate guidance, are doing muddled science. When biologists identify a protein that contributes to disease, they hunt for chemical compounds that bind to the protein and affect its activity. A typical assay screens many thousands of chemicals. ‘Hits’ become tools for studying the disease, as well as starting points in the hunt for treatments. But many hits are artefacts — their activity does not depend on a specific, drug-like interaction between molecule and protein. A true drug inhibits or activates a protein by fitting into a binding site on the protein. Artefacts have subversive reactivity that masquerades as drug-like binding and yields false signals across a variety of assays. These molecules — pan-assay interference compounds, or PAINS — have defined structures, covering several classes of compound (see ‘Worst offenders’). But biologists and inexperienced chemists rarely recognize them. Instead, such compounds are reported as having promising activity against a wide variety of proteins. Time and research money are consequently wasted in attempts to optimize the activity of these compounds. Chemists make multiple analogues of apparent hits hoping to improve the ‘fit’ between protein and compound. Meanwhile, true hits with real potential are neglected. Until the past decade or so, screening Chemical con artists foil drug discovery


Nature Chemical Biology | 2015

The promise and peril of chemical probes

C.H. Arrowsmith; James E. Audia; Christopher M. Austin; Jonathan B. Baell; Jonathan Bennett; Julian Blagg; C. Bountra; Paul E. Brennan; Peter J. Brown; Mark Edward Bunnage; Carolyn Buser-Doepner; Robert M. Campbell; Adrian Carter; Philip Cohen; Robert A. Copeland; Ben Cravatt; Jayme L. Dahlin; Dashyant Dhanak; A. Edwards; Mathias Frederiksen; Stephen V. Frye; Nathanael S. Gray; Charles E. Grimshaw; David Hepworth; Trevor Howe; Kilian Huber; Jian Jin; Stefan Knapp; Joanne Kotz; Ryan G. Kruger

Chemical probes are powerful reagents with increasing impacts on biomedical research. However, probes of poor quality or that are used incorrectly generate misleading results. To help address these shortcomings, we will create a community-driven wiki resource to improve quality and convey current best practice.


Nature | 2013

Structural basis for modulation of a G-protein-coupled receptor by allosteric drugs.

Ron O. Dror; Hillary F. Green; Celine Valant; David W. Borhani; James R. Valcourt; Albert C. Pan; Daniel H. Arlow; Meritxell Canals; J. Robert Lane; Raphaël Rahmani; Jonathan B. Baell; Patrick M. Sexton; Arthur Christopoulos; David E. Shaw

The design of G-protein-coupled receptor (GPCR) allosteric modulators, an active area of modern pharmaceutical research, has proved challenging because neither the binding modes nor the molecular mechanisms of such drugs are known. Here we determine binding sites, bound conformations and specific drug–receptor interactions for several allosteric modulators of the M2 muscarinic acetylcholine receptor (M2 receptor), a prototypical family A GPCR, using atomic-level simulations in which the modulators spontaneously associate with the receptor. Despite substantial structural diversity, all modulators form cation–π interactions with clusters of aromatic residues in the receptor extracellular vestibule, approximately 15 Å from the classical, ‘orthosteric’ ligand-binding site. We validate the observed modulator binding modes through radioligand binding experiments on receptor mutants designed, on the basis of our simulations, either to increase or to decrease modulator affinity. Simulations also revealed mechanisms that contribute to positive and negative allosteric modulation of classical ligand binding, including coupled conformational changes of the two binding sites and electrostatic interactions between ligands in these sites. These observations enabled the design of chemical modifications that substantially alter a modulator’s allosteric effects. Our findings thus provide a structural basis for the rational design of allosteric modulators targeting muscarinic and possibly other GPCRs.


Nature Chemical Biology | 2013

Structure-guided design of a selective BCL-XL inhibitor

Guillaume Lessene; Peter E. Czabotar; Brad E. Sleebs; Kerry Zobel; Kym N. Lowes; Jerry M. Adams; Jonathan B. Baell; Peter M. Colman; Kurt Deshayes; Wayne J. Fairbrother; John A. Flygare; Paul Gibbons; Wilhelmus J A Kersten; Sanjitha Kulasegaram; Rebecca M. Moss; John P. Parisot; Brian J. Smith; Ian P. Street; Hong Yang; David C. S. Huang; Keith Geoffrey Watson

The prosurvival BCL-2 family protein BCL-X(L) is often overexpressed in solid tumors and renders malignant tumor cells resistant to anticancer therapeutics. Enhancing apoptotic responses by inhibiting BCL-X(L) will most likely have widespread utility in cancer treatment and, instead of inhibiting multiple prosurvival BCL-2 family members, a BCL-X(L)-selective inhibitor would be expected to minimize the toxicity to normal tissues. We describe the use of a high-throughput screen to discover a new series of small molecules targeting BCL-X(L) and their structure-guided development by medicinal chemistry. The optimized compound, WEHI-539 (7), has high affinity (subnanomolar) and selectivity for BCL-X(L) and potently kills cells by selectively antagonizing its prosurvival activity. WEHI-539 will be an invaluable tool for distinguishing the roles of BCL-X(L) from those of its prosurvival relatives, both in normal cells and notably in malignant tumor cells, many of which may prove to rely upon BCL-X(L) for their sustained growth.


Biochemical Pharmacology | 2002

Prospects for targeting the Bcl-2 family of proteins to develop novel cytotoxic drugs.

Jonathan B. Baell; David C. S. Huang

Over the last decade the molecular mechanisms controlling programmed cell death (apoptosis) have become clearer. It appears that many physiological and damage signals activate the cell death machinery by inhibiting the pro-survival Bcl-2 proteins. Since many chemotherapeutic drugs used to treat cancers activate the cell death machinery indirectly, there is much interest in developing peptide and non-peptide mimics of the BH3-only proteins, a family of proteins that act as direct antagonists of Bcl-2, as novel anti-cancer agents. This commentary review current progress in our search for such drugs and discusses recent findings in light of our current understanding of the cell death signaling. The potential for discovering novel agents that may form a useful part of the treatment of malignant disease is enormous but we still lack critical understanding of precisely how Bcl-2 function. However, the frequency of mutations affecting proteins that (directly or indirectly) impinge on apoptosis suggests that the approach of targeting Bcl-2 might be a profitable one.


Future Medicinal Chemistry | 2010

Observations on screening-based research and some concerning trends in the literature

Jonathan B. Baell

Academic drug discovery is being accompanied by a plethora of publications that report screening hits as good starting points for drug discovery or as useful tool compounds, whereas in many cases this is not so. These compounds may be protein-reactive but can also interfere in bioassays via a number of other means, and it can be very hard to prove early on that they represent false starts. This, for instance, makes it difficult for journals in their assessment of manuscripts submitted for publication. Wider awareness and recognition of these problematic compounds will help the academic drug-discovery community focus on and publish genuinely optimizable screening hits. This will be of general benefit.


Nucleic Acids Research | 2015

FAF-Drugs3: a web server for compound property calculation and chemical library design

David Lagorce; Olivier Sperandio; Jonathan B. Baell; Maria A. Miteva; Bruno O. Villoutreix

Drug attrition late in preclinical or clinical development is a serious economic problem in the field of drug discovery. These problems can be linked, in part, to the quality of the compound collections used during the hit generation stage and to the selection of compounds undergoing optimization. Here, we present FAF-Drugs3, a web server that can be used for drug discovery and chemical biology projects to help in preparing compound libraries and to assist decision-making during the hit selection/lead optimization phase. Since it was first described in 2006, FAF-Drugs has been significantly modified. The tool now applies an enhanced structure curation procedure, can filter or analyze molecules with user-defined or eight predefined physicochemical filters as well as with several simple ADMET (absorption, distribution, metabolism, excretion and toxicity) rules. In addition, compounds can be filtered using an updated list of 154 hand-curated structural alerts while Pan Assay Interference compounds (PAINS) and other, generally unwanted groups are also investigated. FAF-Drugs3 offers access to user-friendly html result pages and the possibility to download all computed data. The server requires as input an SDF file of the compounds; it is open to all users and can be accessed without registration at http://fafdrugs3.mti.univ-paris-diderot.fr.


Journal of Natural Products | 2016

Feeling Nature’s PAINS: Natural Products, Natural Product Drugs, and Pan Assay Interference Compounds (PAINS)

Jonathan B. Baell

We have previously reported on classes of compounds that can interfere with bioassays via a number of different mechanisms and termed such compounds Pan Assay INterference compoundS, or PAINS. These compounds were defined on the basis of high-throughput data derived from vendor-supplied synthetics. The question therefore arises whether the concept of PAINS is relevant to compounds of natural origin. Here, it is shown that this is indeed the case, but that the context of the biological readout is an important factor that must be brought into consideration.


Bioinformatics | 2011

The FAF-Drugs2 server

David Lagorce; Julien Maupetit; Jonathan B. Baell; Olivier Sperandio; Pierre Tufféry; Maria A. Miteva; Hervé Galons; Bruno O. Villoutreix

SUMMARY The FAF-Drugs2 server is a web application that prepares chemical compound libraries prior to virtual screening or that assists hit selection/lead optimization before chemical synthesis or ordering. The FAF-Drugs2 web server is an enhanced version of the FAF-Drugs2 package that now includes Pan Assay Interference Compounds detection. This online toolkit has been designed through a user-centered approach with emphasis on user-friendliness. This is a unique online tool allowing to prepare large compound libraries with in house or user-defined filtering parameters. AVAILABILITY The FAF-Drugs2 server is freely available at http://bioserv.rpbs.univ-paris-diderot.fr/FAF-Drugs/.

Collaboration


Dive into the Jonathan B. Baell's collaboration.

Top Co-Authors

Avatar

Brad E. Sleebs

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Guillaume Lessene

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Jayme L. Dahlin

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Ian P. Street

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew John Harvey

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keith Geoffrey Watson

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge