Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan B. Olsen is active.

Publication


Featured researches published by Jonathan B. Olsen.


Molecular & Cellular Proteomics | 2010

A Lentiviral Functional Proteomics Approach Identifies Chromatin Remodeling Complexes Important for the Induction of Pluripotency

Anthony B. Mak; Zuyao Ni; Johannes A. Hewel; Ginny I. Chen; Guoqing Zhong; Konstantina Karamboulas; Kim Blakely; Sandra Smiley; Edyta Marcon; Denitza Roudeva; Joyce Li; Jonathan B. Olsen; Cuihong Wan; Thanuja Punna; Ruth Isserlin; Sergei Chetyrkin; Anne-Claude Gingras; Andrew Emili; Jack Greenblatt; Jason Moffat

Protein complexes and protein-protein interactions are essential for almost all cellular processes. Here, we establish a mammalian affinity purification and lentiviral expression (MAPLE) system for characterizing the subunit compositions of protein complexes. The system is flexible (i.e. multiple N- and C-terminal tags and multiple promoters), is compatible with GatewayTM cloning, and incorporates a reference peptide. Its major advantage is that it permits efficient and stable delivery of affinity-tagged open reading frames into most mammalian cell types. We benchmarked MAPLE with a number of human protein complexes involved in transcription, including the RNA polymerase II-associated factor, negative elongation factor, positive transcription elongation factor b, SWI/SNF, and mixed lineage leukemia complexes. In addition, MAPLE was used to identify an interaction between the reprogramming factor Klf4 and the Swi/Snf chromatin remodeling complex in mouse embryonic stem cells. We show that the SWI/SNF catalytic subunit Smarca2/Brm is up-regulated during the process of induced pluripotency and demonstrate a role for the catalytic subunits of the SWI/SNF complex during somatic cell reprogramming. Our data suggest that the transcription factor Klf4 facilitates chromatin remodeling during reprogramming.


Developmental Cell | 2011

Perinuclear Cohibin Complexes Maintain Replicative Life Span via Roles at Distinct Silent Chromatin Domains

Janet N.Y. Chan; Betty P. Poon; Jayesh S. Salvi; Jonathan B. Olsen; Andrew Emili; Karim Mekhail

Heterochromatin, or silent chromatin, preferentially resides at the nuclear envelope. Telomeres and rDNA repeats are the two major perinuclear silent chromatin domains of Saccharomyces cerevisiae. The Cohibin protein complex maintains rDNA repeat stability in part through silent chromatin assembly and perinuclear rDNA anchoring. We report here a role for Cohibin at telomeres and show that functions of the complex at chromosome ends and rDNA maintain replicative life span. Cohibin binds LEM/SUN domain-containing nuclear envelope proteins and telomere-associated factors. Disruption of Cohibin or the envelope proteins abrogates telomere localization and silent chromatin assembly within subtelomeres. Loss of Cohibin limits Sir2 histone deacetylase localization to chromosome ends, disrupts subtelomeric DNA stability, and shortens life span even when rDNA repeats are stabilized. Restoring telomeric Sir2 concentration abolishes chromatin and life span defects linked to the loss of telomeric Cohibin. Our work uncovers roles for Cohibin complexes and reveals relationships between nuclear compartmentalization, chromosome stability, and aging.


Journal of Biological Chemistry | 2015

LLY-507, a Cell-active, Potent, and Selective Inhibitor of Protein-lysine Methyltransferase SMYD2

Hannah Nguyen; Abdellah Allali-Hassani; Stephen Antonysamy; Shawn Chang; Lisa Hong Chen; Carmen Curtis; Spencer Emtage; Li Fan; Tarun Gheyi; Fengling Li; Shichong Liu; Joseph R. Martin; David Mendel; Jonathan B. Olsen; Laura Pelletier; Tatiana Shatseva; Song Wu; Feiyu Fred Zhang; C.H. Arrowsmith; Peter J. Brown; Robert M. Campbell; Benjamin A. Garcia; Dalia Barsyte-Lovejoy; Mary M. Mader; Masoud Vedadi

Background: SMYD2 is a methyltransferase whose role in cancer is poorly understood and is lacking cell-active chemical tools. Results: We describe LLY-507, a small molecule inhibitor of SMYD2. Conclusion: LLY-507 is potent, selective, cell-active, and binds SMYD2 in a high resolution co-crystal. Significance: LLY-507 is a first-in-class cell-potent chemical probe that will be valuable in dissecting SMYD2 biology. SMYD2 is a lysine methyltransferase that catalyzes the monomethylation of several protein substrates including p53. SMYD2 is overexpressed in a significant percentage of esophageal squamous primary carcinomas, and that overexpression correlates with poor patient survival. However, the mechanism(s) by which SMYD2 promotes oncogenesis is not understood. A small molecule probe for SMYD2 would allow for the pharmacological dissection of this biology. In this report, we disclose LLY-507, a cell-active, potent small molecule inhibitor of SMYD2. LLY-507 is >100-fold selective for SMYD2 over a broad range of methyltransferase and non-methyltransferase targets. A 1.63-Å resolution crystal structure of SMYD2 in complex with LLY-507 shows the inhibitor binding in the substrate peptide binding pocket. LLY-507 is active in cells as measured by reduction of SMYD2-induced monomethylation of p53 Lys370 at submicromolar concentrations. We used LLY-507 to further test other potential roles of SMYD2. Mass spectrometry-based proteomics showed that cellular global histone methylation levels were not significantly affected by SMYD2 inhibition with LLY-507, and subcellular fractionation studies indicate that SMYD2 is primarily cytoplasmic, suggesting that SMYD2 targets a very small subset of histones at specific chromatin loci and/or non-histone substrates. Breast and liver cancers were identified through in silico data mining as tumor types that display amplification and/or overexpression of SMYD2. LLY-507 inhibited the proliferation of several esophageal, liver, and breast cancer cell lines in a dose-dependent manner. These findings suggest that LLY-507 serves as a valuable chemical probe to aid in the dissection of SMYD2 function in cancer and other biological processes.


Molecular & Cellular Proteomics | 2016

Quantitative Profiling of the Activity of Protein Lysine Methyltransferase SMYD2 Using SILAC-Based Proteomics

Jonathan B. Olsen; Xing-Jun Cao; Bomie Han; Lisa Hong Chen; Alexander Horvath; Timothy I. Richardson; Robert M. Campbell; Benjamin A. Garcia; Hannah Nguyen

The significance of non-histone lysine methylation in cell biology and human disease is an emerging area of research exploration. The development of small molecule inhibitors that selectively and potently target enzymes that catalyze the addition of methyl-groups to lysine residues, such as the protein lysine mono-methyltransferase SMYD2, is an active area of drug discovery. Critical to the accurate assessment of biological function is the ability to identify target enzyme substrates and to define enzyme substrate specificity within the context of the cell. Here, using stable isotopic labeling with amino acids in cell culture (SILAC) coupled with immunoaffinity enrichment of mono-methyl-lysine (Kme1) peptides and mass spectrometry, we report a comprehensive, large-scale proteomic study of lysine mono-methylation, comprising a total of 1032 Kme1 sites in esophageal squamous cell carcinoma (ESCC) cells and 1861 Kme1 sites in ESCC cells overexpressing SMYD2. Among these Kme1 sites is a subset of 35 found to be potently down-regulated by both shRNA-mediated knockdown of SMYD2 and LLY-507, a selective small molecule inhibitor of SMYD2. In addition, we report specific protein sequence motifs enriched in Kme1 sites that are directly regulated by endogenous SMYD2 activity, revealing that SMYD2 substrate specificity is more diverse than expected. We further show direct activity of SMYD2 toward BTF3-K2, PDAP1-K126 as well as numerous sites within the repetitive units of two unique and exceptionally large proteins, AHNAK and AHNAK2. Collectively, our findings provide quantitative insights into the cellular activity and substrate recognition of SMYD2 as well as the global landscape and regulation of protein mono-methylation.


Cell Reports | 2014

Human-Chromatin-Related Protein Interactions Identify a Demethylase Complex Required for Chromosome Segregation

Edyta Marcon; Zuyao Ni; Shuye Pu; Andrei L. Turinsky; Sandra Smiley Trimble; Jonathan B. Olsen; Rosalind Silverman-Gavrila; Lorelei Silverman-Gavrila; Sadhna Phanse; Hongbo Guo; Guoqing Zhong; Xinghua Guo; Peter Young; Swneke D. Bailey; Denitza Roudeva; Dorothy Yanling Zhao; Johannes A. Hewel; Joyce Li; Susanne Gräslund; Marcin Paduch; Anthony A. Kossiakoff; Mathieu Lupien; Andrew Emili; Jack Greenblatt

Chromatin regulation is driven by multicomponent protein complexes, which form functional modules. Deciphering the components of these modules and their interactions is central to understanding the molecular pathways these proteins are regulating, their functions, and their relation to both normal development and disease. We describe the use of affinity purifications of tagged human proteins coupled with mass spectrometry to generate a protein-protein interaction map encompassing known and predicted chromatin-related proteins. On the basis of 1,394 successful purifications of 293 proteins, we report a high-confidence (85% precision) network involving 11,464 protein-protein interactions among 1,738 different human proteins, grouped into 164 often overlapping protein complexes with a particular focus on the family of JmjC-containing lysine demethylases, their partners, and their roles in chromatin remodeling. We show that RCCD1 is a partner of histone H3K36 demethylase KDM8 and demonstrate that both are important for cell-cycle-regulated transcriptional repression in centromeric regions and accurate mitotic division.


Developmental Cell | 2014

Roles for Pbp1 and caloric restriction in genome and lifespan maintenance via suppression of RNA-DNA hybrids.

Jayesh S. Salvi; Janet N.Y. Chan; Kirk Szafranski; Tony T. Liu; Jane D. Wu; Jonathan B. Olsen; Nurussaba Khanam; Betty P. Poon; Andrew Emili; Karim Mekhail

Intergenic transcription within repetitive loci such as the ribosomal DNA (rDNA) repeats of yeast commonly triggers aberrant recombination. Major mechanisms suppressing aberrant rDNA recombination rely on chromatin silencing or RNAPII repression at intergenic spacers within the repeats. We find ancient processes operating at rDNA intergenic spacers and other loci to maintain genome stability via repression of RNA-DNA hybrids. The yeast Ataxin-2 protein Pbp1 binds noncoding RNA, suppresses RNA-DNA hybrids, and prevents aberrant rDNA recombination. Repression of RNA-DNA hybrids in Pbp1-deficient cells through RNaseH overexpression, deletion of the G4DNA-stabilizing Stm1, or caloric restriction operating via RNaseH/Pif1 restores rDNA stability. Pbp1 also limits hybrids at non-rDNA G4DNA loci including telomeres. Moreover, cells lacking Pbp1 have a short replicative lifespan that is extended upon hybrid suppression. Thus, we find roles for Pbp1 in genome maintenance and reveal that caloric restriction counteracts Pbp1 deficiencies by engaging RNaseH and Pif1.


Molecular & Cellular Proteomics | 2012

Target Identification by Chromatographic Co-elution: Monitoring of Drug-Protein Interactions without Immobilization or Chemical Derivatization

Janet N.Y. Chan; Dajana Vuckovic; Lekha Sleno; Jonathan B. Olsen; Oxana Pogoutse; Pierre C. Havugimana; Johannes A. Hewel; Navgeet Bajaj; Yale Wang; Marcel F. Musteata; Corey Nislow; Andrew Emili

Bioactive molecules typically mediate their biological effects through direct physical association with one or more cellular proteins. The detection of drug-target interactions is therefore essential for the characterization of compound mechanism of action and off-target effects, but generic label-free approaches for detecting binding events in biological mixtures have remained elusive. Here, we report a method termed target identification by chromatographic co-elution (TICC) for routinely monitoring the interaction of drugs with cellular proteins under nearly physiological conditions in vitro based on simple liquid chromatographic separations of cell-free lysates. Correlative proteomic analysis of drug-bound protein fractions by shotgun sequencing is then performed to identify candidate target(s). The method is highly reproducible, does not require immobilization or derivatization of drug or protein, and is applicable to diverse natural products and synthetic compounds. The capability of TICC to detect known drug-protein target physical interactions (Kd range: micromolar to nanomolar) is demonstrated both qualitatively and quantitatively. We subsequently used TICC to uncover the sterol biosynthetic enzyme Erg6p as a novel putative anti-fungal target. Furthermore, TICC identified Asc1 and Dak1, a core 40 S ribosomal protein that represses gene expression, and dihydroxyacetone kinase involved in stress adaptation, respectively, as novel yeast targets of a dopamine receptor agonist.


Nature Structural & Molecular Biology | 2014

RPRD1A and RPRD1B are human RNA polymerase II C-terminal domain scaffolds for Ser5 dephosphorylation

Zuyao Ni; Chao Xu; Xinghua Guo; Gerald O. Hunter; Olga V. Kuznetsova; Wolfram Tempel; Edyta Marcon; Guoqing Zhong; Hongbo Guo; Wei Hung William Kuo; Joyce Li; Peter Young; Jonathan B. Olsen; Cuihong Wan; Peter Loppnau; Majida El Bakkouri; Guillermo Senisterra; Hao He; Haiming Huang; Sachdev S. Sidhu; Andrew Emili; Shona Murphy; Amber L. Mosley; C.H. Arrowsmith; Jinrong Min; Jack Greenblatt

The RNA polymerase II (RNAPII) C-terminal domain (CTD) heptapeptide repeats (1-YSPTSPS-7) undergo dynamic phosphorylation and dephosphorylation during the transcription cycle to recruit factors that regulate transcription, RNA processing and chromatin modification. We show here that RPRD1A and RPRD1B form homodimers and heterodimers through their coiled-coil domains and interact preferentially via CTD-interaction domains (CIDs) with RNAPII CTD repeats phosphorylated at S2 and S7. Crystal structures of the RPRD1A, RPRD1B and RPRD2 CIDs, alone and in complex with RNAPII CTD phosphoisoforms, elucidate the molecular basis of CTD recognition. In an example of cross-talk between different CTD modifications, our data also indicate that RPRD1A and RPRD1B associate directly with RPAP2 phosphatase and, by interacting with CTD repeats where phospho-S2 and/or phospho-S7 bracket a phospho-S5 residue, serve as CTD scaffolds to coordinate the dephosphorylation of phospho-S5 by RPAP2.


Molecular & Cellular Proteomics | 2010

Synthetic Peptide Arrays for Pathway-Level Protein Monitoring by Liquid Chromatography-Tandem Mass Spectrometry

Johannes A. Hewel; Jian Liu; Kento Onishi; Vincent Fong; Shamanta Chandran; Jonathan B. Olsen; Oxana Pogoutse; Mike Schutkowski; Holger Wenschuh; Dirk F. H. Winkler; Larry Eckler; Peter W. Zandstra; Andrew Emili

Effective methods to detect and quantify functionally linked regulatory proteins in complex biological samples are essential for investigating mammalian signaling pathways. Traditional immunoassays depend on proprietary reagents that are difficult to generate and multiplex, whereas global proteomic profiling can be tedious and can miss low abundance proteins. Here, we report a target-driven liquid chromatography-tandem mass spectrometry (LC-MS/MS) strategy for selectively examining the levels of multiple low abundance components of signaling pathways which are refractory to standard shotgun screening procedures and hence appear limited in current MS/MS repositories. Our stepwise approach consists of: (i) synthesizing microscale peptide arrays, including heavy isotope-labeled internal standards, for use as high quality references to (ii) build empirically validated high density LC-MS/MS detection assays with a retention time scheduling system that can be used to (iii) identify and quantify endogenous low abundance protein targets in complex biological mixtures with high accuracy by correlation to a spectral database using new software tools. The method offers a flexible, rapid, and cost-effective means for routine proteomic exploration of biological systems including “label-free” quantification, while minimizing spurious interferences. As proof-of-concept, we have examined the abundance of transcription factors and protein kinases mediating pluripotency and self-renewal in embryonic stem cell populations.


Methods of Molecular Biology | 2011

Identification of Mammalian Protein Complexes by Lentiviral-Based Affinity Purification and Mass Spectrometry

Zuyao Ni; Jonathan B. Olsen; Andrew Emili; Jack Greenblatt

Protein complexes and protein-protein interactions (PPIs) are fundamental for most biological functions. Deciphering the extensive protein interaction networks that occur within cellular contexts has become a logical extension to the human genome project. Proteome-scale interactome analysis of mammalian systems requires efficient methods for accurately detecting PPIs with specific considerations for the intrinsic technical challenges of mammalian genome manipulation. In this chapter, we outline in detail an innovative lentiviral-based functional proteomic approach that can be used to rapidly characterize protein complexes from a broad range of mammalian cell lines. This method integrates the following key features: (1) lentiviral elements for efficient delivery of tagged constructs into mammalian cell lines; (2) site-specific Gateway™ recombination sites for easy cloning; (3) versatile epitope-tagging system for flexible affinity purification strategies; and (4) LC-MS-based protein identification using tandem mass spectrometry.

Collaboration


Dive into the Jonathan B. Olsen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zuyao Ni

University of Toronto

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joyce Li

University of Toronto

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge