Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan B. Puritz is active.

Publication


Featured researches published by Jonathan B. Puritz.


Molecular Ecology | 2014

Demystifying the RAD fad

Jonathan B. Puritz; Mikhail V. Matz; Robert J. Toonen; Jesse N. Weber; Daniel I. Bolnick; Christopher E. Bird

We are writing in response to the population and phylogenomics meeting review by Andrews & Luikart ( ) entitled ‘Recent novel approaches for population genomics data analysis’. Restriction‐site‐associated DNA (RAD) sequencing has become a powerful and useful approach in molecular ecology, with several different published methods now available to molecular ecologists, none of which can be considered the best option in all situations. A&L report that the original RAD protocol of Miller et al. ( ) and Baird et al. ( ) is superior to all other RAD variants because putative PCR duplicates can be identified (see Baxter et al. ), thereby reducing the impact of PCR artefacts on allele frequency estimates (Andrews & Luikart ). In response, we (i) challenge the assertion that the original RAD protocol minimizes the impact of PCR artefacts relative to that of other RAD protocols, (ii) present additional biases in RADseq that are at least as important as PCR artefacts in selecting a RAD protocol and (iii) highlight the strengths and weaknesses of four different approaches to RADseq which are a representative sample of all RAD variants: the original RAD protocol (mbRAD, Miller et al. ; Baird et al. ), double digest RAD (ddRAD, Peterson et al. ), ezRAD (Toonen et al. ) and 2bRAD (Wang et al. ). With an understanding of the strengths and weaknesses of different RAD protocols, researchers can make a more informed decision when selecting a RAD protocol.


Journal of Marine Biology | 2011

Defining Boundaries for Ecosystem-Based Management: A Multispecies Case Study of Marine Connectivity across the Hawaiian Archipelago.

Robert J. Toonen; Kimberly R. Andrews; Iliana B. Baums; Christopher E. Bird; Gregory T. Concepcion; Toby S. Daly-Engel; Jeff A. Eble; Anuschka Faucci; Michelle R. Gaither; Matthew Iacchei; Jonathan B. Puritz; Jennifer K. Schultz; Derek J. Skillings; Molly A. Timmers; Brian W. Bowen

Determining the geographic scale at which to apply ecosystem-based management (EBM) has proven to be an obstacle for many marine conservation programs. Generalizations based on geographic proximity, taxonomy, or life history characteristics provide little predictive power in determining overall patterns of connectivity, and therefore offer little in terms of delineating boundaries for marine spatial management areas. Here, we provide a case study of 27 taxonomically and ecologically diverse species (including reef fishes, marine mammals, gastropods, echinoderms, cnidarians, crustaceans, and an elasmobranch) that reveal four concordant barriers to dispersal within the Hawaiian Archipelago which are not detected in single-species exemplar studies. We contend that this multispecies approach to determine concordant patterns of connectivity is an objective and logical way in which to define the minimum number of management units and that EBM in the Hawaiian Archipelago requires at least five spatially managed regions.


PeerJ | 2013

ezRAD: a simplified method for genomic genotyping in non-model organisms

Robert J. Toonen; Jonathan B. Puritz; Zac H. Forsman; Jonathan Whitney; Iria Fernandez-Silva; Kimberly R. Andrews; Christopher E. Bird

Here, we introduce ezRAD, a novel strategy for restriction site–associated DNA (RAD) that requires little technical expertise or investment in laboratory equipment, and demonstrate its utility for ten non-model organisms across a wide taxonomic range. ezRAD differs from other RAD methods primarily through its use of standard Illumina TruSeq library preparation kits, which makes it possible for any laboratory to send out to a commercial genomic core facility for library preparation and next-generation sequencing with virtually no additional investment beyond the cost of the service itself. This simplification opens RADseq to any lab with the ability to extract DNA and perform a restriction digest. ezRAD also differs from others in its flexibility to use any restriction enzyme (or combination of enzymes) that cuts frequently enough to generate fragments of the desired size range, without requiring the purchase of separate adapters for each enzyme or a sonication step, which can further decrease the cost involved in choosing optimal enzymes for particular species and research questions. We apply this method across a wide taxonomic diversity of non-model organisms to demonstrate the utility and flexibility of our approach. The simplicity of ezRAD makes it particularly useful for the discovery of single nucleotide polymorphisms and targeted amplicon sequencing in natural populations of non-model organisms that have been historically understudied because of lack of genomic information.


PeerJ | 2014

dDocent: a RADseq, variant-calling pipeline designed for population genomics of non-model organisms

Jonathan B. Puritz; Christopher M. Hollenbeck; John R. Gold

Restriction-site associated DNA sequencing (RADseq) has become a powerful and useful approach for population genomics. Currently, no software exists that utilizes both paired-end reads from RADseq data to efficiently produce population-informative variant calls, especially for non-model organisms with large effective population sizes and high levels of genetic polymorphism. dDocent is an analysis pipeline with a user-friendly, command-line interface designed to process individually barcoded RADseq data (with double cut sites) into informative SNPs/Indels for population-level analyses. The pipeline, written in BASH, uses data reduction techniques and other stand-alone software packages to perform quality trimming and adapter removal, de novo assembly of RAD loci, read mapping, SNP and Indel calling, and baseline data filtering. Double-digest RAD data from population pairings of three different marine fishes were used to compare dDocent with Stacks, the first generally available, widely used pipeline for analysis of RADseq data. dDocent consistently identified more SNPs shared across greater numbers of individuals and with higher levels of coverage. This is due to the fact that dDocent quality trims instead of filtering, incorporates both forward and reverse reads (including reads with INDEL polymorphisms) in assembly, mapping, and SNP calling. The pipeline and a comprehensive user guide can be found at http://dDocent.wordpress.com.


Evolution | 2009

DISCORDANT DISTRIBUTION OF POPULATIONS AND GENETIC VARIATION IN A SEA STAR WITH HIGH DISPERSAL POTENTIAL

Carson C. Keever; Jennifer M. Sunday; Jonathan B. Puritz; Jason A. Addison; Robert J. Toonen; Richard K. Grosberg; Michael W. Hart

Patiria miniata, a broadcast-spawning sea star species with high dispersal potential, has a geographic range in the intertidal zone of the northeast Pacific Ocean from Alaska to California that is characterized by a large range gap in Washington and Oregon. We analyzed spatial genetic variation across the P. miniata range using multilocus sequence data (mtDNA, nuclear introns) and multilocus genotype data (microsatellites). We found a strong phylogeographic break at Queen Charlotte Sound in British Columbia that was not in the location predicted by the geographical distribution of the populations. However, this population genetic discontinuity does correspond to previously described phylogeographic breaks in other species. Northern populations from Alaska and Haida Gwaii were strongly differentiated from all southern populations from Vancouver Island and California. Populations from Vancouver Island and California were undifferentiated with evidence of high gene flow or very recent separation across the range disjunction between them. The surprising and discordant spatial distribution of populations and alleles suggests that historical vicariance (possibly caused by glaciations) and contemporary dispersal barriers (possibly caused by oceanographic conditions) both shape population genetic structure in this species.


Nature Communications | 2011

Coastal pollution limits pelagic larval dispersal

Jonathan B. Puritz; Robert J. Toonen

The ecological impact of large coastal human populations on marine ecosystems remains relatively unknown. Here, we examine the population structure of Patiria miniata, the bat star, and correlate genetic distances with a model based on flow rates and proximity to P. miniata populations for the four major stormwater runoff and wastewater effluent sources of the Southern California Bight. We show that overall genetic connectivity is high (F(ST)~0.005); however, multivariate analyses show that genetic structure is highly correlated with anthropogenic inputs. The best models included both stormwater and wastewater variables and explained between 26.55 and 93.69% of the observed structure. Additionally, regressions between allelic richness and distance to sources show that populations near anthropogenic pollution have reduced genetic diversity. Our results indicate that anthropogenic runoff and effluent are acting as barriers to larval dispersal, effectively isolating a high gene flow species that is virtually free of direct human impact.


PLOS ONE | 2012

Next-Generation Phylogeography: A Targeted Approach for Multilocus Sequencing of Non-Model Organisms

Jonathan B. Puritz; Jason A. Addison; Robert J. Toonen

The field of phylogeography has long since realized the need and utility of incorporating nuclear DNA (nDNA) sequences into analyses. However, the use of nDNA sequence data, at the population level, has been hindered by technical laboratory difficulty, sequencing costs, and problematic analytical methods dealing with genotypic sequence data, especially in non-model organisms. Here, we present a method utilizing the 454 GS-FLX Titanium pyrosequencing platform with the capacity to simultaneously sequence two species of sea star (Meridiastra calcar and Parvulastra exigua) at five different nDNA loci across 16 different populations of 20 individuals each per species. We compare results from 3 populations with traditional Sanger sequencing based methods, and demonstrate that this next-generation sequencing platform is more time and cost effective and more sensitive to rare variants than Sanger based sequencing. A crucial advantage is that the high coverage of clonally amplified sequences simplifies haplotype determination, even in highly polymorphic species. This targeted next-generation approach can greatly increase the use of nDNA sequence loci in phylogeographic and population genetic studies by mitigating many of the time, cost, and analytical issues associated with highly polymorphic, diploid sequence markers.


Proceedings of the Royal Society of London B: Biological Sciences | 2012

Extraordinarily rapid life-history divergence between Cryptasterina sea star species

Jonathan B. Puritz; Carson C. Keever; Jason A. Addison; Maria Byrne; Michael W. Hart; Richard K. Grosberg; Robert J. Toonen

Life history plays a critical role in governing microevolutionary processes such as gene flow and adaptation, as well as macroevolutionary processes such speciation. Here, we use multilocus phylogeographic analyses to examine a speciation event involving spectacular life-history differences between sister species of sea stars. Cryptasterina hystera has evolved a suite of derived life-history traits (including internal self-fertilization and brood protection) that differ from its sister species Cryptasterina pentagona, a gonochoric broadcast spawner. We show that these species have only been reproductively isolated for approximately 6000 years (95% highest posterior density of 905–22 628), and that this life-history change may be responsible for dramatic genetic consequences, including low nucleotide diversity, zero heterozygosity and no gene flow. The rapid divergence of these species rules out some mechanisms of isolation such as adaptation to microhabitats in sympatry, or slow divergence by genetic drift during prolonged isolation. We hypothesize that the large phenotypic differences between species relative to the short divergence time suggests that the life-history differences observed may be direct responses to disruptive selection between populations. We speculate that local environmental or demographic differences at the southern range margin are possible mechanisms of selection driving one of the fastest known marine speciation events.


Molecular Ecology | 2015

Selection and sex-biased dispersal in a coastal shark: the influence of philopatry on adaptive variation

David S. Portnoy; Jonathan B. Puritz; Christopher M. Hollenbeck; James Gelsleichter; Demian D. Chapman; John R. Gold

Sex‐biased dispersal is expected to homogenize nuclear genetic variation relative to variation in genetic material inherited through the philopatric sex. When site fidelity occurs across a heterogeneous environment, local selective regimes may alter this pattern. We assessed spatial patterns of variation in nuclear‐encoded, single nucleotide polymorphisms (SNPs) and sequences of the mitochondrial control region in bonnethead sharks (Sphyrna tiburo), a species thought to exhibit female philopatry, collected from summer habitats used for gestation. Geographic patterns of mtDNA haplotypes and putatively neutral SNPs confirmed female philopatry and male‐mediated gene flow along the northeastern coast of the Gulf of Mexico. A total of 30 outlier SNP loci were identified; alleles at over half of these loci exhibited signatures of latitude‐associated selection. Our results indicate that in species with sex‐biased dispersal, philopatry can facilitate sorting of locally adaptive variation, with the dispersing sex facilitating movement of potentially adaptive variation among locations and environments.


Molecular Ecology | 2013

The evolving male: spinner dolphin (Stenella longirostris) ecotypes are divergent at Y chromosome but not mtDNA or autosomal markers

Kimberly R. Andrews; William F. Perrin; Marc Oremus; Leszek Karczmarski; Brian W. Bowen; Jonathan B. Puritz; Robert J. Toonen

The susceptibility of the Y chromosome to sexual selection may make this chromosome an important player in the formation of reproductive isolating barriers, and ultimately speciation. Here, we investigate the role of the Y chromosome in phenotypic divergence and reproductive isolation of spinner dolphin (Stenella longirostris) ecotypes. This species contains six known ecotypes (grouped into four subspecies) that exhibit striking differences in morphology, habitat and mating system, despite having adjacent or overlapping ranges and little genetic divergence at previously studied mtDNA and autosomal markers. We examined the phylogeographic structure for all six ecotypes across the species range (n = 261, 17 geographic locations) using DNA sequences from three Y chromosome markers, two maternally inherited mitochondrial (mtDNA) markers, and a biparentally inherited autosomal intron. mtDNA and autosomal analyses revealed low divergence (most ΦST values <0.1) between ecotypes and geographic regions, concordant with previous studies. In contrast, Y intron analyses revealed fixed differences amongst the three most phenotypically divergent groups: S. l. longirostris vs. S. l. roseiventris vs. combined S. l. orientalis/S. l. centroamericana/Tres Marias ecotypes). Another ecotype (whitebelly), previously postulated to be a hybrid between the two phenotypically most divergent ecotypes, had Y haplotypes from both putative parent ecotypes, supporting a hybrid designation. Reduced introgression of the Y chromosome has previously been observed in other organisms ranging from insects to terrestrial mammals, and here we demonstrate this phenomenon in a marine mammal with high dispersal capabilities. These results indicate that reduced introgression of the Y chromosome occurs in a wide taxonomic range of organisms and support the growing body of evidence that rapid evolution of the Y chromosome is important in evolutionary diversification.

Collaboration


Dive into the Jonathan B. Puritz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge