Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan Bath is active.

Publication


Featured researches published by Jonathan Bath.


Nature Nanotechnology | 2011

Direct observation of stepwise movement of a synthetic molecular transporter

Shelley Wickham; Masayuki Endo; Yousuke Katsuda; Kumi Hidaka; Jonathan Bath; Hiroshi Sugiyama; Andrew J. Turberfield

Controlled motion at the nanoscale can be achieved by using Watson-Crick base-pairing to direct the assembly and operation of a molecular transport system consisting of a track, a motor and fuel, all made from DNA. Here, we assemble a 100-nm-long DNA track on a two-dimensional scaffold, and show that a DNA motor loaded at one end of the track moves autonomously and at a constant average speed along the full length of the track, a journey comprising 16 consecutive steps for the motor. Real-time atomic force microscopy allows direct observation of individual steps of a single motor, revealing mechanistic details of its operation. This precisely controlled, long-range transport could lead to the development of systems that could be programmed and routed by instructions encoded in the nucleotide sequences of the track and motor. Such systems might be used to create molecular assembly lines modelled on the ribosome.


Nature Nanotechnology | 2012

A DNA-based molecular motor that can navigate a network of tracks

Shelley Wickham; Jonathan Bath; Yousuke Katsuda; Masayuki Endo; Kumi Hidaka; Hiroshi Sugiyama; Andrew J. Turberfield

Synthetic molecular motors can be fuelled by the hydrolysis or hybridization of DNA. Such motors can move autonomously and programmably, and long-range transport has been observed on linear tracks. It has also been shown that DNA systems can compute. Here, we report a synthetic DNA-based system that integrates long-range transport and information processing. We show that the path of a motor through a network of tracks containing four possible routes can be programmed using instructions that are added externally or carried by the motor itself. When external control is used we find that 87% of the motors follow the correct path, and when internal control is used 71% of the motors follow the correct path. Programmable motion will allow the development of computing networks, molecular systems that can sort and process cargoes according to instructions that they carry, and assembly lines that can be reconfigured dynamically in response to changing demands.


Journal of the American Chemical Society | 2011

Remote Toehold: A Mechanism for Flexible Control of DNA Hybridization Kinetics

Anthony J. Genot; David Yu Zhang; Jonathan Bath; Andrew J. Turberfield

Hybridization of DNA strands can be used to build molecular devices, and control of the kinetics of DNA hybridization is a crucial element in the design and construction of functional and autonomous devices. Toehold-mediated strand displacement has proved to be a powerful mechanism that allows programmable control of DNA hybridization. So far, attempts to control hybridization kinetics have mainly focused on the length and binding strength of toehold sequences. Here we show that insertion of a spacer between the toehold and displacement domains provides additional control: modulation of the nature and length of the spacer can be used to control strand-displacement rates over at least 3 orders of magnitude. We apply this mechanism to operate displacement reactions in potentially useful kinetic regimes: the kinetic proofreading and concentration-robust regimes.


Nature Reviews Molecular Cell Biology | 2001

DNA transport in bacteria

Jeff Errington; Jonathan Bath; Ling Juan Wu

DNA transport is important in various biological contexts — particularly chromosome segregation and intercellular gene transfer. Recently, progress has been made in understanding the function of a family of bacterial proteins involved in DNA transfer, and we focus here on one of the best-understood members, SpoIIIE. Studies of SpoIIIE-like proteins show that they might couple DNA transport to processes such as cell division, conjugation (mating) and the resolution of chromosome dimers.


Journal of the American Chemical Society | 2011

Reversible Logic Circuits Made of DNA

Anthony J. Genot; Jonathan Bath; Andrew J. Turberfield

We report reversible logic circuits made of DNA. The circuits are based on an AND gate that is designed to be thermodynamically and kinetically reversible and to respond nonlinearly to the concentrations of its input molecules. The circuits continuously recompute their outputs, allowing them to respond to changing inputs. They are robust to imperfections in their inputs.


Nano Letters | 2011

A Programmable Molecular Robot

Richard A. Muscat; Jonathan Bath; Andrew J. Turberfield

We have developed a programmable and auton-omous molecular robot whose motion is fueled by DNA hybridization. Instructions determining the path to be followed are programmed into the fuel molecules, allowing precise control of cargo motion on a branched track.


Angewandte Chemie | 2010

Multistep DNA‐Templated Reactions for the Synthesis of Functional Sequence Controlled Oligomers

Mireya L. McKee; Phillip J. Milnes; Jonathan Bath; Eugen Stulz; Andrew J. Turberfield; Rachel K. O'Reilly

Biomimetic: A strand displacement mechanism was designed to permit DNA-templated synthesis of functional oligomers of arbitrary length (see scheme). Key features of the mechanism are that successive coupling reactions take place in near-identical environments and that purification is only necessary in the last synthesis step.


Cell | 1997

Topological Selectivity in Xer Site-Specific Recombination

Sean D. Colloms; Jonathan Bath; David J. Sherratt

The product topology of Xer-mediated site-specific recombination at plasmid sites has been determined. The product of deletion at pSC101 psi is a right-handed antiparallel 4-noded catenane. The ColE1 cer deletion product has an identical topology, except that only one pair of strands is exchanged. These specific product topologies imply that the productive synaptic complex and the strand exchange mechanism have fixed topologies. Further analysis suggests that synapsis traps exactly three negative supercoils between recombining sites, and that strand exchange introduces a further negative topological node in the deletion reaction. We present a model in which the requirement for a specific synaptic stucture, with two recombination sites interwrapped around the accessory proteins ArgR and PepA, ensures that recombination only occurs efficiently between directly repeated sites on the same DNA molecule.


Small | 2009

Mechanism for a Directional, Processive, and Reversible DNA Motor†

Jonathan Bath; Simon J. Green; Katherine Allen; Andrew J. Turberfield

A bipedal motor mechanism that coordinates the chemical and mechanical cycles of two-identical feet can be generalized to obtain energy from hydrolysis of a DNA or RNA fuel was demonstrated. The motors that can operate continuously on a reusable track require a separate fuel, linear motion and can be coupled to ATP hydrolysis by using a motor architecture. The interaction between fuel and motor can be followed by labeling a fuel at the 5 inches end with FAM and at the 3 inches with TAMRA, thereby decreasing the fluorescence resonance energy transfer (FRET). The mechanism derived has the properties required to create a chemically fueled molecular motor that is both directional and processive, and the directional bias of these motors can be reversed by changing the fuel.


Nature Communications | 2014

Programmable energy landscapes for kinetic control of DNA strand displacement

Robert R. F. Machinek; Thomas E. Ouldridge; Natalie E. C. Haley; Jonathan Bath; Andrew J. Turberfield

DNA is used to construct synthetic systems that sense, actuate, move and compute. The operation of many dynamic DNA devices depends on toehold-mediated strand displacement, by which one DNA strand displaces another from a duplex. Kinetic control of strand displacement is particularly important in autonomous molecular machinery and molecular computation, in which non-equilibrium systems are controlled through rates of competing processes. Here, we introduce a new method based on the creation of mismatched base pairs as kinetic barriers to strand displacement. Reaction rate constants can be tuned across three orders of magnitude by altering the position of such a defect without significantly changing the stabilities of reactants or products. By modelling reaction free-energy landscapes, we explore the mechanistic basis of this control mechanism. We also demonstrate that oxDNA, a coarse-grained model of DNA, is capable of accurately predicting and explaining the impact of mismatches on displacement kinetics.

Collaboration


Dive into the Jonathan Bath's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eugen Stulz

University of Southampton

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge