Jonathan Bridge
Sheffield Hallam University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jonathan Bridge.
Scientific Reports | 2015
Achim Schmalenberger; Adele L. Duran; A. Bray; Jonathan Bridge; Steeve Bonneville; Liane G. Benning; Maria E. Romero-Gonzalez; Jonathan R. Leake; Steven A. Banwart
Trees and their associated rhizosphere organisms play a major role in mineral weathering driving calcium fluxes from the continents to the oceans that ultimately control long-term atmospheric CO2 and climate through the geochemical carbon cycle. Photosynthate allocation to tree roots and their mycorrhizal fungi is hypothesized to fuel the active secretion of protons and organic chelators that enhance calcium dissolution at fungal-mineral interfaces. This was tested using 14CO2 supplied to shoots of Pinus sylvestris ectomycorrhizal with the widespread fungus Paxillus involutus in monoxenic microcosms, revealing preferential allocation by the fungus of plant photoassimilate to weather grains of limestone and silicates each with a combined calcium and magnesium content of over 10 wt.%. Hyphae had acidic surfaces and linear accumulation of weathered calcium with secreted oxalate, increasing significantly in sequence: quartz, granite < basalt, olivine, limestone < gabbro. These findings confirmed the role of mineral-specific oxalate exudation in ectomycorrhizal weathering to dissolve calcium bearing minerals, thus contributing to the geochemical carbon cycle.
Advances in Colloid and Interface Science | 2017
Peyman Babakhani; Jonathan Bridge; Ruey-an Doong; Tanapon Phenrat
Environmental applications of nanoparticles (NP) increasingly result in widespread NP distribution within porous media where they are subject to various concurrent transport mechanisms including irreversible deposition, attachment/detachment (equilibrium or kinetic), agglomeration, physical straining, site-blocking, ripening, and size exclusion. Fundamental research in NP transport is typically conducted at small scale, and theoretical mechanistic modeling of particle transport in porous media faces challenges when considering the simultaneous effects of transport mechanisms. Continuum modeling approaches, in contrast, are scalable across various scales ranging from column experiments to aquifer. They have also been able to successfully describe the simultaneous occurrence of various transport mechanisms of NP in porous media such as blocking/straining or agglomeration/deposition/detachment. However, the diversity of model equations developed by different authors and the lack of effective approaches for their validation present obstacles to the successful robust application of these models for describing or predicting NP transport phenomena. This review aims to describe consistently all the important NP transport mechanisms along with their representative mathematical continuum models as found in the current scientific literature. Detailed characterizations of each transport phenomenon in regards to their manifestation in the column experiment outcomes, i.e., breakthrough curve (BTC) and residual concentration profile (RCP), are presented to facilitate future interpretations of BTCs and RCPs. The review highlights two NP transport mechanisms, agglomeration and size exclusion, which are potentially of great importance in controlling the fate and transport of NP in the subsurface media yet have been widely neglected in many existing modeling studies. A critical limitation of the continuum modeling approach is the number of parameters used upon application to larger scales and when a series of transport mechanisms are involved. We investigate the use of simplifying assumptions, such as the equilibrium assumption, in modeling the attachment/detachment mechanisms within a continuum modelling framework. While acknowledging criticisms about the use of this assumption for NP deposition on a mechanistic (process) basis, we found that its use as a description of dynamic deposition behavior in a continuum model yields broadly similar results to those arising from a kinetic model. Furthermore, we show that in two dimensional (2-D) continuum models the modeling efficiency based on the Akaike information criterion (AIC) is enhanced for equilibrium vs kinetic with no significant reduction in model performance. This is because fewer parameters are needed for the equilibrium model compared to the kinetic model. Two major transport regimes are identified in the transport of NP within porous media. The first regime is characterized by higher particle-surface attachment affinity than particle-particle attachment affinity, and operative transport mechanisms of physicochemical filtration, blocking, and physical retention. The second regime is characterized by the domination of particle-particle attachment tendency over particle-surface affinity. In this regime although physicochemical filtration as well as straining may still be operative, ripening is predominant together with agglomeration and further subsequent retention. In both regimes careful assessment of NP fate and transport is necessary since certain combinations of concurrent transport phenomena leading to large migration distances are possible in either case.
European Journal of Soil Science | 2017
A Pourbakhtiar; Tjalfe G. Poulsen; Stephen Wilkinson; Jonathan Bridge
We demonstrate a novel experimental arrangement for measuring wind turbulence-induced gas transport in dry porous media under controlled conditions. This equipment was applied to assess the effect of wind turbulence on gas transport (quantified as a dispersion coefficient) as a function of distance to the surface of the porous medium exposed to wind. Two different strategies for the measurement of wind-induced gas transport were compared. Experiments were carried out with O2 and CO2 as tracer gases with average vertical wind speeds of 0.02–1.06 m s−1. Oxygen breakthrough curves as a function of distance to the wind-exposed surface of the porous medium were analysed numerically with a finite-difference-based model to assess gas transport. We showed that wind turbulence-induced gas transport is an important transport mechanism that can be 20–70 times larger than molecular diffusion-induced transport. Wind conditions and properties of the porous medium had strong controlling effects on this relationship. Importantly, we show that even though wind-induced gas transport is greatest near to the wind-exposed surface, it can have marked effects on the variation in gas concentration at much greater depths.
Water Resources Research | 2017
Peyman Babakhani; Jonathan Bridge; Ruey-an Doong; Tanapon Phenrat
The continuing rapid expansion of industrial and consumer processes based on nanoparticles (NP) necessitates a robust model for delineating their fate and transport in groundwater. An ability to reliably specify the full parameter set for prediction of NP transport using continuum models is crucial. In this paper we report the reanalysis of a data set of 493 published column experiment outcomes together with their continuum modeling results. Experimental properties were parameterized into 20 factors which are commonly available. They were then used to predict five key continuum model parameters as well as the effluent concentration via artificial neural network (ANN)-based correlations. The Partial Derivatives (PaD) technique and Monte Carlo method were used for the analysis of sensitivities and model-produced uncertainties, respectively. The outcomes shed light on several controversial relationships between the parameters, e.g., it was revealed that the trend of math formula with average pore water velocity was positive. The resulting correlations, despite being developed based on a “black-box” technique (ANN), were able to explain the effects of theoretical parameters such as critical deposition concentration (CDC), even though these parameters were not explicitly considered in the model. Porous media heterogeneity was considered as a parameter for the first time and showed sensitivities higher than those of dispersivity. The model performance was validated well against subsets of the experimental data and was compared with current models. The robustness of the correlation matrices was not completely satisfactory, since they failed to predict the experimental breakthrough curves (BTCs) at extreme values of ionic strengths.
Geophysical Research Letters | 2017
Tristram Irvine-Fynn; Philip R. Porter; Ann V. Rowan; Duncan J. Quincey; Morgan J. Gibson; Jonathan Bridge; C. Scott Watson; Alun Hubbard; Neil F. Glasser
Meltwater and runoff from glaciers in High Mountain Asia is a vital freshwater resource for one fifth of the Earths population. Between 13% and 36% of the regions glacierized areas exhibit surface debris cover and associated supraglacial ponds whose hydrological buffering roles remain unconstrained. We present a high-resolution meltwater hydrograph from the extensively debris-covered Khumbu Glacier, Nepal, spanning a seven-month period in 2014. Supraglacial ponds and accompanying debris cover modulate proglacial discharge by acting as transient and evolving reservoirs. Diurnally, the supraglacial pond system may store >23% of observed mean daily discharge, with mean recession constants ranging from 31 to 108 hours. Given projections of increased debris-cover and supraglacial pond extent across High Mountain Asia, we conclude that runoff regimes may become progressively buffered by the presence of supraglacial reservoirs. Incorporation of these processes is critical to improve predictions of the regions freshwater resource availability and cascading environmental effects downstream.
Environmental Science & Technology | 2018
Peyman Babakhani; Ruey-an Doong; Jonathan Bridge
Despite aggregations crucial role in controlling the environmental fate of nanoparticles (NP), the extent to which current models can describe the progressive stages of NP aggregation/sedimentation is still unclear. In this paper, 24 model combinations of two population-balance models and various collision frequency and settling velocity models are used to analyze spatiotemporal variations in the size and concentration of hydroxyapatite (HAp) NP. The impact of initial conditions and variability in attachment efficiency, α, with aggregate size are investigated. Although permeability models perform well in calculating collision frequencies, they are not appropriate for describing settling velocity because of their negative correlation or insensitivity in respect to fractal dimension. Considering both early and late stages of aggregation, both experimental and model data indicate overall mass removal peaks at an intermediate ionic strength (5 mM CaCl2) even though the mean aggregate size continued to increase through higher ionic strengths (to 10 mM CaCl2). This trend was consistent when different approaches to the initial particle size distribution were used and when a variable or constant α was used. These results point to the importance of accurately considering different stages of aggregation in modeling NP fate within various environmental conditions.
Canadian Journal of Microbiology | 2018
Adharsh Rajasekar; Sekar Raju; Eduardo Medina-Roldán; Jonathan Bridge; Charles K.S. Moy; Stephen Wilkinson
The impact of contaminated leachate on groundwater from landfills is well known, but the specific effects on bacterial consortia are less well-studied. Bacterial communities in a landfill and an urban site located in Suzhou, China, were studied using Illumina high-throughput sequencing. A total of 153 944 good-quality reads were produced and sequences assigned to 6388 operational taxonomic units. Bacterial consortia consisted of up to 16 phyla, including Proteobacteria (31.9%-94.9% at landfill, 25.1%-43.3% at urban sites), Actinobacteria (0%-28.7% at landfill, 9.9%-34.3% at urban sites), Bacteroidetes (1.4%-25.6% at landfill, 5.6%-7.8% at urban sites), Chloroflexi (0.4%-26.5% at urban sites only), and unclassified bacteria. Pseudomonas was the dominant (67%-93%) genus in landfill leachate. Arsenic concentrations in landfill raw leachate (RL) (1.11 × 103 μg/L) and fresh leachate (FL2) (1.78 × 103 μg/L) and mercury concentrations in RL (10.9 μg/L) and FL2 (7.37 μg/L) exceeded Chinese State Environmental Protection Administration standards for leachate in landfills. The Shannon diversity index and Chao1 richness estimate showed RL and FL2 lacked richness and diversity when compared with other samples. This is consistent with stresses imposed by elevated arsenic and mercury and has implications for ecological site remediation by bioremediation or natural attenuation.
Environmental science. Nano | 2018
Peyman Babakhani; Jonathan Bridge; Tanapon Phenrat; Ruey-an Doong; Karl R. Whittle
Nanoparticle (NP) aggregation is typically investigated in either quiescent or turbulent mixing conditions; neither is fully representative of dynamic natural environments. In groundwater, complex interacting influences of advective–diffusive transport, pore tortuosity, and the arrival of aggregates from up-gradient pores impacts the aggregation behaviour of NPs, whereas in surface waters, continuous mixing of fresh particle and aged aggregate populations amends aggregation rates. To mimic such conditions, a cylinder reactor containing shattered graphene oxide NP ( 5 times in the rotating system than in the static system. Later (5–13 h) aggregates collided with extensively each other, broke, and reformed on the rotating cylinder wall giving rise to larger, denser aggregates (>1 cm). These results thus shed new light on the differences in aggregation behaviour between porous media and other natural environmental systems compared to quiescent batch experiments.
Canadian Journal of Microbiology | 2018
Adharsh Rajasekar; Stephen Wilkinson; Raju Sekar; Jonathan Bridge; Eduardo Medina-Roldán; Charles K.S. Moy
We report an investigation of microbially induced carbonate precipitation by seven indigenous bacteria isolated from a landfill in China. Bacterial strains were cultured in a medium supplemented with 25 mmol/L calcium chloride and 333 mmol/L urea. The experiments were carried out at 30 °C for 7 days with agitation by a shaking table at 130 r/min. Scanning electron microscopic and X-ray diffraction analyses showed variations in calcium carbonate polymorphs and mineral composition induced by all bacterial strains. The amount of carbonate precipitation was quantified by titration. The amount of carbonate precipitated in the medium varied among isolates, with the lowest being Bacillus aerius rawirorabr15 (LC092833) precipitating around 1.5 times more carbonate per unit volume than the abiotic (blank) solution. Pseudomonas nitroreducens szh_asesj15 (LC090854) was found to be the most efficient, precipitating 3.2 times more carbonate than the abiotic solution. Our results indicate that bacterial carbonate precipitation occurred through ureolysis and suggest that variations in carbonate crystal polymorphs and rates of precipitation were driven by strain-specific differences in urease expression and response to the alkaline environment. These results and the method applied provide benchmarking and screening data for assessing the bioremediation potential of indigenous bacteria for containment of contaminants in landfills.
Hydrology and Earth System Sciences | 2016
Esraa Tarawneh; Jonathan Bridge; Neil Macdonald