Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan Brinkmann is active.

Publication


Featured researches published by Jonathan Brinkmann.


Monthly Notices of the Royal Astronomical Society | 2006

Galaxy halo masses and satellite fractions from galaxy–galaxy lensing in the Sloan Digital Sky Survey: stellar mass, luminosity, morphology and environment dependencies

Rachel Mandelbaum; Uros Seljak; Guinevere Kauffmann; Christopher M. Hirata; Jonathan Brinkmann

The relationship between galaxies and dark matter (DM) can be characterized by the halo mass of the central galaxy and the fraction of galaxies that are satellites. Here, we present observational constraints from the Sloan Digital Sky Survey on these quantities as a function of r-band luminosity and stellar mass using galaxy-galaxy weak lensing, with a total of 351 507 lenses. We use stellar masses derived from spectroscopy and virial halo masses derived from weak gravitational lensing to determine the efficiency with which baryons in the halo of the central galaxy have been converted into stars. We find that an L* galaxy with a stellar mass of 6 x 1010 M ⊙ is hosted by a halo with mass of 1.4 x 10 12 h -1 M ⊙ , independent of morphology, yielding baryon conversion efficiencies of 17 +10 -5 per cent (early-types) and 16 +15 -6 per cent (late-types) at the 95 per cent confidence level (statistical, not including systematic uncertainty due to assumption of a universal initial mass function). We find that for a given stellar mass, the halo mass is independent of morphology below M stellar = 10 11 M ⊙ , in contrast to typically a factor of 2 difference in halo mass between ellipticals and spirals at a fixed luminosity. This suggests that stellar mass is a good proxy for halo mass in this range and should be used preferentially whenever a halo mass selected sample is needed. For higher stellar masses, the conversion efficiency is a declining function of stellar mass, and the differences in halo mass between early- and late-types become larger, reflecting the fact that most group and cluster haloes with masses above 10 13 M ⊙ host ellipticals at the centre, while even the brightest central spirals are hosted by haloes of mass below 10 13 M ⊙ We find that the fraction of spirals that are satellites is roughly 10-15 per cent independent of stellar mass or luminosity, while for ellipticals this fraction decreases with stellar mass from 50 per cent at 10 10 M ⊙ to 10 per cent at 3 x 10 11 M ⊙ or 20 per cent at the maximum luminosity considered. We split the elliptical sample by local density, and find that at a given luminosity there is no difference in the signal on scales below 100 h -1 kpc between high- and low-density regions, suggesting that tidal stripping inside large haloes does not remove most of the DM from the early-type satellites. This result is dominated by haloes in the mass range 10 13 -10 14 h -1 M ⊙ , and is an average over all separations from the group or cluster centre.


The Astrophysical Journal | 2007

A MaxBCG Catalog of 13,823 Galaxy Clusters from the Sloan Digital Sky Survey

Benjamin P. Koester; Timothy A. McKay; James Annis; Risa H. Wechsler; August E. Evrard; L. E. Bleem; M. R. Becker; David E. Johnston; E. Sheldon; Robert C. Nichol; Christopher J. Miller; Ryan Scranton; Neta A. Bahcall; John C. Barentine; Howard J. Brewington; Jonathan Brinkmann; Michael Harvanek; Scott J. Kleinman; Jurek Krzesinski; Daniel C. Long; Atsuko Nitta; Donald P. Schneider; S. Sneddin; W. Voges; Donald G. York

We present a catalog of galaxy clusters selected using the maxBCG red-sequence method from Sloan Digital Sky Survey photometric data. This catalog includes 13,823 clusters with velocity dispersions greater than 400 km s-1 and is the largest galaxy cluster catalog assembled to date. They are selected in an approximately volume-limited way from a 0.5 Gpc3 region covering 7500 deg2 of sky between redshifts 0.1 and 0.3. Each cluster contains between 10 and 190 E/S0 ridgeline galaxies brighter than 0.4L* within a scaled radius R200. The tight relation between ridgeline color and redshift provides an accurate photometric redshift estimate for every cluster. Photometric redshift errors are shown by comparison to spectroscopic redshifts to be small (Δ ≃ 0:01), essentially independent of redshift, and well determined throughout the redshift range. Runs of maxBCG on realistic mock catalogs suggest that the sample is more than 90% pure and more than 85% complete for clusters with masses ≥ 1 x 1014 M⊙. Spectroscopic measurements of cluster members are used to examine line-of-sight projection as a contaminant in the identification of brightest cluster galaxies and cluster member galaxies. Spectroscopic data are also used to demonstrate the correlation between optical richness and velocity dispersion. Comparison to the combined NORAS and REFLEX X-rayYselected cluster catalogs shows that X-rayYluminous clusters are found among the optically richer maxBCG clusters. This paper is the first in a series that will consider the properties of these clusters, their galaxy populations, and their implications for cosmology.


The Astrophysical Journal | 2008

The Milky Way Tomography with SDSS. II. Stellar Metallicity

Željko Ivezić; Branimir Sesar; Mario Juric; Nicholas A. Bond; Julianne J. Dalcanton; Constance M. Rockosi; Brian Yanny; Heidi Jo Newberg; Timothy C. Beers; Carlos Allende Prieto; Ron Wilhelm; Young Sun Lee; Thirupathi Sivarani; John E. Norris; Coryn A. L. Bailer-Jones; Paola Re Fiorentin; David J. Schlegel; Alan Uomoto; Robert H. Lupton; Gillian R. Knapp; James E. Gunn; Kevin R. Covey; Gajus A. Miknaitis; Mamoru Doi; M. Tanaka; Masataka Fukugita; Steve Kent; Douglas P. Finkbeiner; Jeffrey A. Munn; Jeffrey R. Pier

In addition to optical photometry of unprecedented quality, the Sloan Digital Sky Survey (SDSS) is producing a massive spectroscopic database which already contains over 280,000 stellar spectra. Using eectiv e temperature and metallicity derived from SDSS spectra for 60,000 F and G type main sequence stars (0:2 < g r < 0:6), we develop polynomial models, reminiscent of traditional methods based on the UBV photometry, for estimating these parameters from the SDSS u g and g r colors. These estimators reproduce SDSS spectroscopic parameters with a root-mean-square scatter of 100 K for eectiv e temperature, and 0.2 dex for metallicity (limited by photometric errors), which are similar to random and systematic uncertainties in spectroscopic determinations. We apply this method to a photometric catalog of coadded SDSS observations and study the photometric metallicity distribution of 200,000 F and G type stars observed in 300 deg 2 of high Galactic latitude sky. These deeper (g < 20:5) and photometrically precise ( 0.01 mag) coadded data enable an accurate measurement of the unbiased metallicity distribution for a complete volume-limited sample of stars at distances between 500 pc and 8 kpc. The metallicity distribution can be exquisitely modeled using two components with a spatially varying number ratio, that correspond to disk and halo. The best-t number ratio of the two components is consistent with that implied by the decomposition of stellar counts proles into exponential disk and power-law halo components by Juri c et al. (2008). The two components also possess the kinematics expected for disk and halo stars. The metallicity of the halo component can be modeled as a spatially invariant Gaussian distribution with a mean of [F e=H] = 1:46 and a standard deviation of 0.3 dex. The disk metallicity distribution is non-Gaussian, with a remarkably small scatter (rms 0.16 dex) and the median smoothly decreasing with distance from the plane from 0:6 at 500 pc to 0:8 beyond several kpc. Similarly, we nd using proper motion measurements that a nonGaussian rotational velocity distribution of disk stars shifts by 50 km/s as the distance from the plane increases from 500 pc to several kpc. Despite this similarity, the metallicity and rotational velocity distributions of disk stars are not correlated (Kendall’s = 0:017 0:018). This absence of a correlation between metallicity and kinematics for disk stars is in a conict with the traditional decomposition in terms of thin and thick disks, which predicts a strong correlation ( = 0:30 0:04) at 1 kpc from the mid-plane. Instead, the variation of the metallicity and rotational velocity distributions can be modeled using non-Gaussian functions that retain their shapes and only shift as the distance from the mid-plane increases. We also study the metallicity distribution using a shallower (g < 19:5) but much larger sample of close to three million stars in 8500 sq. deg. of sky included in SDSS Data Release 6. The large sky coverage enables the detection of coherent substructures in the kinematics{ metallicity space, such as the Monoceros stream, which rotates faster than the LSR, and has a median metallicity of [F e=H] = 0:95, with an rms scatter of only 0.15 dex. We extrapolate our results to the performance expected from the Large Synoptic Survey Telescope (LSST) and estimate that LSST will obtain metallicity measurements accurate to 0.2 dex or better, with proper motion measurements accurate to 0.2-0.5 mas/yr, for about 200 million F/G dwarf stars within a distance limit of 100 kpc (g < 23:5). Subject headings: methods: data analysis | stars: statistics | Galaxy: halo, kinematics and dynamics, stellar content, structure


The Astrophysical Journal | 2004

The ensemble photometric variability of ∼25,000 quasars in the Sloan Digital Sky Survey

Daniel E. Vanden Berk; Brian C. Wilhite; Richard G. Kron; Scott F. Anderson; Robert J. Brunner; Patrick B. Hall; Željko Ivezić; Gordon T. Richards; Donald P. Schneider; Donald G. York; Jonathan Brinkmann; D. Q. Lamb; Robert C. Nichol; David J. Schlegel

Using a sample of over 25,000 spectroscopically confirmed quasars from the Sloan Digital Sky Survey, we show how quasar variability in the rest-frame optical/UV regime depends on rest-frame time lag, luminosity, rest wavelength, redshift, the presence of radio and X-ray emission, and the presence of broad absorption line systems. Imaging photometry is compared with three-band spectrophotometry obtained at later epochs spanning time lags up to about 2 yr. The large sample size and wide range of parameter values allow the dependence of variability to be isolated as a function of many independent parameters. The time dependence of variability (the structure function) is well fitted by a single power law with an index γ = 0.246 ± 0.008, on timescales from days to years. There is an anticorrelation of variability amplitude with rest wavelength—e.g., quasars are about twice as variable at 1000 A as at 6000 A—and quasars are systematically bluer when brighter at all redshifts. There is a strong anticorrelation of variability with quasar luminosity—variability amplitude decreases by a factor of about 4 when luminosity increases by a factor of 100. There is also a significant positive correlation of variability amplitude with redshift, indicating evolution of the quasar population or the variability mechanism. We parameterize all of these relationships. Quasars with ROSAT All-Sky Survey X-ray detections are significantly more variable (at optical/UV wavelengths) than those without, and radio-loud quasars are marginally more variable than their radio-quiet counterparts. We find no significant difference in the variability of quasars with and without broad absorption line troughs. Currently, no models of quasar variability address more than a few of these relationships. Models involving multiple discrete events or gravitational microlensing are unlikely by themselves to account for the data. So-called accretion disk instability models are promising, but more quantitative predictions are needed.


The Astronomical Journal | 2002

OPTICAL AND RADIO PROPERTIES OF EXTRAGALACTIC SOURCES OBSERVED BY THE FIRST SURVEY AND THE SLOAN DIGITAL SKY SURVEY

Željko Ivezić; Kristen Menou; Gillian R. Knapp; Michael A. Strauss; Robert H. Lupton; Daniel E. Vanden Berk; Gordon T. Richards; Christy A. Tremonti; Michael A. Weinstein; Scott F. Anderson; Neta A. Bahcall; Robert H. Becker; Mariangela Bernardi; Michael R. Blanton; Daniel J. Eisenstein; Xiaohui Fan; Douglas P. Finkbeiner; Kristian Finlator; Joshua A. Frieman; James E. Gunn; Patrick B. Hall; Rita S. J. Kim; Ali Kinkhabwala; Vijay K. Narayanan; Constance M. Rockosi; David J. Schlegel; Donald P. Schneider; Iskra V. Strateva; Mark SubbaRao; Aniruddha R. Thakar

We discuss the optical and radio properties of ~30,000 FIRST (radio, 20 cm, sensitive to 1 mJy) sources positionally associated within 15 with a Sloan Digital Sky Survey (SDSS) (optical, sensitive to r* ~ 22.2) source in 1230 deg2 of sky. The matched sample represents ~30% of the 108,000 FIRST sources and 0.1% of the 2.5 ? 107 SDSS sources in the studied region. SDSS spectra are available for 4300 galaxies and 1154 quasars from the matched sample and for a control sample of 140,000 galaxies and 20,000 quasars in 1030 deg2 of sky. Here we analyze only core sources, which dominate the sample; the fraction of SDSS-FIRST sources with complex radio morphology is determined to be less than 10%. This large and unbiased catalog of optical identifications provides much firmer statistical footing for existing results and allows several new findings. The majority (83%) of the FIRST sources identified with an SDSS source brighter than r* = 21 are optically resolved; the fraction of resolved objects among the matched sources is a function of the radio flux, increasing from ~50% at the bright end to ~90% at the FIRST faint limit. Nearly all optically unresolved radio sources have nonstellar colors indicative of quasars. We estimate an upper limit of ~5% for the fraction of quasars with broadband optical colors indistinguishable from those of stars. The distribution of quasars in the radio flux?optical flux plane suggests the existence of the quasar radio dichotomy; 8% ? 1% of all quasars with i* 2.22) galaxies, especially those with r* > 17.5. Magnitude- and redshift-limited samples show that radio galaxies have a different optical luminosity distribution than nonradio galaxies selected by the same criteria; when galaxies are further separated by their colors, this result remains valid for both blue and red galaxies. For a given optical luminosity and redshift, the observed optical colors of radio galaxies are indistinguishable from those of all SDSS galaxies selected by identical criteria. The distributions of radio-to-optical flux ratio are similar for blue and red galaxies in redshift-limited samples; this similarity implies that the difference in their luminosity functions and resulting selection effects are the dominant cause for the preponderance of red radio galaxies in flux-limited samples. The fraction of radio galaxies whose emission-line ratios indicate an AGN (30%), rather than starburst, origin is 6 times larger than the corresponding fraction for all SDSS galaxies (r* < 17.5). We confirm that the AGN-to-starburst galaxy number ratio increases with radio flux and find that radio emission from AGNs is more concentrated than radio emission from starburst galaxies.


Monthly Notices of the Royal Astronomical Society | 2007

The Clustering of Luminous Red Galaxies in the Sloan Digital Sky Survey Imaging Data

Nikhil Padmanabhan; David J. Schlegel; Uros Seljak; Alexey Makarov; Neta A. Bahcall; Michael R. Blanton; Jonathan Brinkmann; Daniel J. Eisenstein; Douglas P. Finkbeiner; James E. Gunn; David W. Hogg; Željko Ivezić; Gillian R. Knapp; Jon Loveday; Robert H. Lupton; Robert C. Nichol; Donald P. Schneider; Michael A. Strauss; Max Tegmark; Donald G. York

We present the 3D real-space clustering power spectrum of a sample of ∼600 000 luminous red galaxies measured by the Sloan Digital Sky Survey, using photometric redshifts. These galaxies are old, elliptical systems with strong 4000-A breaks, and have accurate photometric redshifts with an average error of Δz= 0.03. This sample of galaxies ranges from redshift z= 0.2 to 0.6 over 3528 deg2 of the sky, probing a volume of 1.5 h−3 Gpc3, making it the largest volume ever used for galaxy clustering measurements. We measure the angular clustering power spectrum in eight redshift slices and use well-calibrated redshift distributions to combine these into a high-precision 3D real-space power spectrum from k= 0.005 to k= 1 h Mpc−1. We detect power on gigaparsec scales, beyond the turnover in the matter power spectrum, at a ∼2σ significance for k < 0.01 h Mpc−1, increasing to 5.5σ for k < 0.02 h Mpc−1. This detection of power is on scales significantly larger than those accessible to current spectroscopic redshift surveys. We also find evidence for baryonic oscillations, both in the power spectrum, as well as in fits to the baryon density, at a 2.5 σ confidence level. The large volume and resulting small statistical errors on the power spectrum allow us to constrain both the amplitude and the scale dependence of the galaxy bias in cosmological fits. The statistical power of these data to constrain cosmology is ∼1.7 times better than previous clustering analyses. Varying the matter density and baryon fraction, we find ΩM= 0.30 ± 0.03, and Ωb/ΩM= 0.18 ± 0.04, for a fixed Hubble constant of 70 km s−1 Mpc−1 and a scale-invariant spectrum of initial perturbations. The detection of baryonic oscillations also allows us to measure the comoving distance to z= 0.5; we find a best-fitting distance of 1.73 ± 0.12 Gpc, corresponding to a 6.5 per cent error on the distance. These results demonstrate the ability to make precise clustering measurements with photometric surveys.


Monthly Notices of the Royal Astronomical Society | 2013

The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: a large sample of mock galaxy catalogues

Marc Manera; Roman Scoccimarro; Will J. Percival; Lado Samushia; Cameron K. McBride; A. Ross; Ravi K. Sheth; Martin White; Beth Reid; Ariel G. Sánchez; Roland de Putter; Xiaoying Xu; Andreas A. Berlind; Jonathan Brinkmann; Claudia Maraston; B. Nichol; Francesco Montesano; Nikhil Padmanabhan; Ramin A. Skibba; Rita Tojeiro; Benjamin A. Weaver

We present a fast method for producing mock galaxy catalogues that can be used to compute the covariance of large-scale clustering measurements and test analysis techniques. Our method populates a second-order Lagrangian perturbation theory (2LPT) matter field, where we calibrate masses of dark matter haloes by detailed comparisons with N-body simulations. We demonstrate that the clustering of haloes is recovered at ∼10 per cent accuracy. We populate haloes with mock galaxies using a halo occupation distribution (HOD) prescription, which has been calibrated to reproduce the clustering measurements on scales between 30 and 80 h−1 Mpc. We compare the sample covariance matrix from our mocks with analytic estimates, and discuss differences. We have used this method to make catalogues corresponding to Data Release 9 of the Baryon Oscillation Spectroscopic Survey (BOSS), producing 600 mock catalogues of the ‘CMASS’ galaxy sample. These mocks have enabled detailed tests of methods and errors, and have formed an integral part of companion analyses of these galaxy data.


Monthly Notices of the Royal Astronomical Society | 2005

Systematic errors in weak lensing: application to SDSS galaxy–galaxy weak lensing

Rachel Mandelbaum; Christopher M. Hirata; Uros Seljak; Jacek Guzik; Nikhil Padmanabhan; Cullen H. Blake; Michael R. Blanton; Robert H. Lupton; Jonathan Brinkmann

Weak lensing is emerging as a powerful observational tool to constrain cosmological models, but is at present limited by an incomplete understanding of many sources of systematic error. Many of these errors are multiplicative and depend on the population of background galaxies. We show how the commonly cited geometric test, which is rather insensitive to cosmology, can be used as a ratio test of systematics in the lensing signal at the 1 per cent level. We apply this test to the galaxy-galaxy lensing analysis of the Sloan Digital Sky Survey (SDSS), which at present is the sample with the highest weak lensing signal-to-noise ratio and has the additional advantage of spectroscopic redshifts for lenses. This allows one to perform meaningful geometric tests of systematics for different subsamples of galaxies at different mean redshifts, such as brighter galaxies, fainter galaxies and high-redshift luminous red galaxies, both with and without photometric redshift estimates. We use overlapping objects between SDSS and the DEEP2 and 2df-Sloan LRG and Quasar (2SLAQ) spectroscopic surveys to establish accurate calibration of photometric redshifts and to determine the redshift distributions for SDSS. We use these redshift results to compute the projected surface density contrast ΔΣ around 259 609 spectroscopic galaxies in the SDSS; by measuring ΔΣ with different source samples we establish consistency of the results at the 10 per cent level (1σ). We also use the ratio test to constrain shear calibration biases and other systematics in the SDSS survey data to determine the overall galaxy-galaxy weak lensing signal calibration uncertainty. We find no evidence of any inconsistency among many subsamples of the data.


Monthly Notices of the Royal Astronomical Society | 2006

Detection of large scale intrinsic ellipticity-density correlation from the sloan digital sky survey and implications for weak lensing surveys

Rachel Mandelbaum; Christopher M. Hirata; Mustapha Ishak; Uros Seljak; Jonathan Brinkmann

The power spectrum of weak lensing shear caused by large-scale structure is an emerging tool for precision cosmology, in particular for measuring the effects of dark energy on the growth of structure at low redshift. One potential source of systematic error is intrinsic alignments of ellipticities of neighbouring galaxies [the intrinsic ellipticity-intrinsic ellipticity (II) correlation] that could mimic the correlations due to lensing. A related possibility pointed out by Hirata & Seljak is correlation between the intrinsic ellipticities of galaxies and the density field responsible for gravitational lensing shear [the gravitational shear-intrinsic ellipticity (GI) correlation]. We present constraints on both the II and GI correlations using 265 908 spectroscopic galaxies from the Sloan Digital Sky Survey (SDSS) and using galaxies as tracers of the mass in the case of the GI analysis. The availability of redshifts in the SDSS allows us to select galaxies at small radial separations, which both reduces noise in the intrinsic alignment measurement and suppresses galaxy-galaxy lensing (which otherwise swamps the GI correlation). While we find no detection of the II correlation, our results are none the less statistically consistent with recent detections found using the SuperCOSMOS survey. Extrapolation of these limits to cosmic shear surveys at z ∼ 1 suggests that the II correlation is unlikely to have been a significant source of error for current measurements of σ 8 with ∼ 10 per cent accuracy, but may still be an issue for future surveys with projected statistical errors below the 1 per cent level unless eliminated using photometric redshifts. In contrast, we have a clear detection of GI correlation in galaxies brighter than L. that persists to the largest scales probed (60 h -1 Mpc) and with a sign predicted by theoretical models. This correlation could cause the existing lensing surveys at z ∼ 1 to underestimate the linear amplitude of fluctuations by as much as 20 per cent depending on the source sample used, while for surveys at z ∼ 0.5 the underestimation may reach 30 per cent. The GI contamination is dominated by the brightest galaxies, possibly due to the alignment of brightest cluster galaxies (BCGs) with the cluster ellipticity due to anisotropic infall along filaments, although other sources of contamination cannot be excluded at this point. We propose that cosmic shear surveys should consider rejection of BCGs from their source catalogues as a test for GI contamination. Future high-precision weak lensing surveys must develop methods to search for and remove this contamination if they are to achieve their promise.


Monthly Notices of the Royal Astronomical Society | 2004

Galaxy–galaxy weak lensing in the Sloan Digital Sky Survey: intrinsic alignments and shear calibration errors

Christopher M. Hirata; Rachel Mandelbaum; Uros Seljak; Jacek Guzik; Nikhil Padmanabhan; Cullen H. Blake; Jonathan Brinkmann; Tamas Budavari; A. Connolly; István Csabai; Ryan Scranton; Alexander S. Szalay

Galaxy-galaxy lensing has emerged as a powerful probe of the dark matter haloes of galaxies, but is subject to contamination if intrinsically aligned satellites of the lens galaxy are used as part of the source sample. We present a measurement of this intrinsic shear using 200 747 lens galaxies from the Sloan Digital Sky Survey (SDSS) spectroscopic sample and a sample of satellites selected using photometric redshifts. The mean intrinsic shear at transverse separations of 30-446 h -1 kpc is constrained to be -0.0062 < Δγ < +0.0066 (99.9 per cent confidence, including identified systematics), which limits contamination of the galaxy-galaxy lensing signal to at most ∼15 per cent on these scales. We present these limits as a function of transverse separation and lens luminosity. We furthermore investigate shear calibration biases in the SDSS, which can also affect galaxy-galaxy lensing, and conclude that the shear amplitude is calibrated to better than 18 per cent. This includes noise-induced calibration biases in the ellipticity, which are small for the sample considered here, but which can be more important if low signal-to-noise ratio or poorly resolved source galaxies are used.

Collaboration


Dive into the Jonathan Brinkmann's collaboration.

Top Co-Authors

Avatar

Donald P. Schneider

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rita Tojeiro

University of St Andrews

View shared research outputs
Top Co-Authors

Avatar

A. Ross

Ohio State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nikhil Padmanabhan

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Christopher M. Hirata

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David J. Schlegel

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge