Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan C. Cruz is active.

Publication


Featured researches published by Jonathan C. Cruz.


The Journal of Neuroscience | 2006

p25/Cyclin-Dependent Kinase 5 Induces Production and Intraneuronal Accumulation of Amyloid β In Vivo

Jonathan C. Cruz; Dohoon Kim; Lily Y. Moy; Matthew M. Dobbin; Xiaoyan Sun; Roderick T. Bronson; Li-Huei Tsai

Aberrant processing of the amyloid precursor protein (APP) and the subsequent accumulation of amyloid β (Aβ) peptide has been widely established as a central event in Alzheimers disease (AD) pathogenesis. The sequential cleavage steps required for the generation of Aβ are well outlined; however, there is a relative dearth of knowledge pertaining to signaling pathways and molecular mechanisms that can modulate this process. Here, we demonstrate a novel role for p25/cyclin-dependent kinase 5 (Cdk5) in regulating APP processing, Aβ peptide generation, and intraneuronal Aβ accumulation in inducible p25 transgenic and compound PD–APP transgenic mouse models that demonstrate deregulated Cdk5 activity and a neurodegenerative phenotype. Induction of p25 resulted in enhanced forebrain Aβ levels before any evidence of neuropathology in these mice. Intracellular Aβ accumulated in perinuclear regions and distended axons within the forebrains of these mice. Evidence for modulations in axonal transport or β-site APP cleaving enzyme 1 protein levels and activity are presented as mechanisms that may account for the Aβ accumulation caused by p25/Cdk5 deregulation. Collectively, these findings delineate a novel pathological mechanism involving aberrant APP processing by p25/Cdk5 and have important implications in AD pathogenesis.


Bioorganic & Medicinal Chemistry Letters | 2008

Exploration of the internal cavity of histone deacetylase (HDAC) with selective HDAC1/HDAC2 inhibitors (SHI-1:2)

Joey L. Methot; Prasun K. Chakravarty; Melissa Chenard; Joshua Close; Jonathan C. Cruz; William K. Dahlberg; Judith C. Fleming; Christopher Hamblett; Julie E. Hamill; Paul Harrington; Andreas Harsch; Richard Heidebrecht; Bethany Hughes; Joon Jung; Candia M. Kenific; Astrid M. Kral; Peter T. Meinke; Richard E. Middleton; Nicole Ozerova; David L. Sloman; Matthew G. Stanton; Alexander A. Szewczak; Sriram Tyagarajan; David J. Witter; J. Paul Secrist; Thomas A. Miller

We report herein the initial exploration of novel selective HDAC1/HDAC2 inhibitors (SHI-1:2). Optimized SHI-1:2 structures exhibit enhanced intrinsic activity against HDAC1 and HDAC2, and are greater than 100-fold selective versus other HDACs, including HDAC3. Based on the SAR of these agents and our current understanding of the HDAC active site, we postulate that the SHI-1:2 extend the existing HDAC inhibitor pharmacophore to include an internal binding domain.


Bioorganic & Medicinal Chemistry Letters | 2010

Purine derivatives as potent γ-secretase modulators

Alexey Rivkin; Sean P. Ahearn; Stephanie M. Chichetti; Christopher Hamblett; Yudith Garcia; Michelle Martinez; Jed L. Hubbs; Michael H. Reutershan; Matthew H. Daniels; Phieng Siliphaivanh; Karin M. Otte; Chaomin Li; Andrew Rosenau; Laura Surdi; Joon Jung; Bethany Hughes; Jamie L. Crispino; George Nikov; Richard E. Middleton; Christopher M. Moxham; Alexander A. Szewczak; Sanjiv Shah; Lily Y. Moy; Candia M. Kenific; Flobert Tanga; Jonathan C. Cruz; Paula Andrade; Minilik Angagaw; Nirah H. Shomer; Thomas A. Miller

The development of a novel series of purines as gamma-secretase modulators for potential use in the treatment of Alzheimers disease is disclosed herein. Optimization of a previously disclosed pyrimidine series afforded a series of potent purine-based gamma-secretase modulators with 300- to 2000-fold in vitro selectivity over inhibition of Notch cleavage and that selectively reduces Alphabeta42 in an APP-YAC transgenic mouse model.


Bioorganic & Medicinal Chemistry Letters | 2008

SAR profiles of spirocyclic nicotinamide derived selective HDAC1/HDAC2 inhibitors (SHI-1:2)

Joey L. Methot; Christopher Hamblett; Dawn M. Mampreian; Joon Jung; Andreas Harsch; Alexander A. Szewczak; William K. Dahlberg; Richard E. Middleton; Bethany Hughes; Judith C. Fleming; Hongmei Wang; Astrid M. Kral; Nicole Ozerova; Jonathan C. Cruz; Brian B. Haines; Melissa Chenard; Candia M. Kenific; J. Paul Secrist; Thomas A. Miller

A potent family of spirocyclic nicotinyl aminobenzamide selective HDAC1/HDAC2 inhibitors (SHI-1:2) is profiled. The incorporation of a biaryl zinc-binding motif into a nicotinyl scaffold resulted in enhanced potency and selectivity versus HDAC3, but also imparted hERG activity. It was discovered that increasing polar surface area about the spirocycle attenuates this liability. Compound 12 induced a 4-fold increase in acetylated histone H2B in an HCT-116 xenograft model study with acute exposure, and inhibited tumor growth in a 21-day efficacy study with qd dosing.


Bioorganic & Medicinal Chemistry Letters | 2010

Fluorinated piperidine acetic acids as γ-secretase modulators

Matthew G. Stanton; Jed L. Hubbs; David L. Sloman; Christopher Hamblett; Paula Andrade; Minilik Angagaw; Grace Bi; Regina M. Black; Jamie L. Crispino; Jonathan C. Cruz; Eric Fan; Georgia Farris; Bethany Hughes; Candia M. Kenific; Richard E. Middleton; George Nikov; Peter Sajonz; Sanjiv Shah; Nirah H. Shomer; Alexander A. Szewczak; Flobert Tanga; Matthew T. Tudge; Mark S. Shearman; Benito Munoz

We report herein a novel series of difluoropiperidine acetic acids as modulators of gamma-secretase. Synthesis of 2-aryl-3,3-difluoropiperidine analogs was facilitated by a unique and selective beta-difluorination with Selectfluor. Compounds 1f and 2c were selected for in vivo assessment and demonstrated selective lowering of Abeta42 in a genetically engineered mouse model of APP processing. Moreover, in a 7-day safety study, rats treated orally with compound 1f (250mg/kg per day, AUC(0-24)=2100microMh) did not exhibit Notch-related effects.


Bioorganic & Medicinal Chemistry Letters | 2008

Phenylglycine and phenylalanine derivatives as potent and selective HDAC1 inhibitors (SHI-1)

Kevin J. Wilson; David J. Witter; Jonathan Grimm; Phieng Siliphaivanh; Karin M. Otte; Astrid M. Kral; Judith C. Fleming; Andreas Harsch; Julie E. Hamill; Jonathan C. Cruz; Melissa Chenard; Alexander A. Szewczak; Richard E. Middleton; Bethany Hughes; William K. Dahlberg; J. Paul Secrist; Thomas A. Miller

An HTS screening campaign identified a series of low molecular weight phenols that showed excellent selectivity (>100-fold) for HDAC1/HDAC2 over other Class I and Class II HDACs. Evolution and optimization of this HTS hit series provided HDAC1-selective (SHI-1) compounds with excellent anti-proliferative activity and improved physical properties. Dose-dependent efficacy in a mouse HCT116 xenograft model was demonstrated with a phenylglycine SHI-1 analog.


Bioorganic & Medicinal Chemistry Letters | 2009

Parallel medicinal chemistry approaches to selective HDAC1/HDAC2 inhibitor (SHI-1:2) optimization

Solomon Kattar; Laura Surdi; Anna A. Zabierek; Joey L. Methot; Richard E. Middleton; Bethany Hughes; Alexander A. Szewczak; William K. Dahlberg; Astrid M. Kral; Nicole Ozerova; Judith C. Fleming; Hongmei Wang; Paul Secrist; Andreas Harsch; Julie E. Hamill; Jonathan C. Cruz; Candia M. Kenific; Melissa Chenard; Thomas A. Miller; Scott C. Berk; Paul Tempest

The successful application of both solid and solution phase library synthesis, combined with tight integration into the medicinal chemistry effort, resulted in the efficient optimization of a novel structural series of selective HDAC1/HDAC2 inhibitors by the MRL-Boston Parallel Medicinal Chemistry group. An initial lead from a small parallel library was found to be potent and selective in biochemical assays. Advanced compounds were the culmination of iterative library design and possess excellent biochemical and cellular potency, as well as acceptable PK and efficacy in animal models.


Bioorganic & Medicinal Chemistry Letters | 2009

Histone deacetylase inhibitors with a primary amide zinc binding group display antitumor activity in xenograft model.

Barbara Attenni; Jesus M. Ontoria; Jonathan C. Cruz; Michael Rowley; Carsten Schultz-Fademrecht; Christian Steinkühler; Philip Jones

Histone deacetylase (HDAC) inhibition causes hyperacetylation of histones leading to differentiation, growth arrest and apoptosis of malignant cells, representing a new strategy in cancer therapy. Many of the known HDAC inhibitors (HDACi) that are in clinical trials possess a hydroxamic acid, that is a strong Zn(2+) binding group, thereby inhibiting some of the class I and class II isoforms. Herein we describe the identification of a selective class I HDAC inhibitor bearing a primary carboxamide moiety as zinc binding group. This HDACi displays good antiproliferative activity against multiple cancer cell lines, and demonstrates efficacy in a xenograft model comparable to vorinostat.


Bioorganic & Medicinal Chemistry Letters | 2011

Triazoles as γ-secretase modulators.

Christian Fischer; Susan L. Zultanski; Hua Zhou; Joey L. Methot; W. Colby Brown; Dawn M. Mampreian; Adam J. Schell; Sanjiv Shah; Hugh Nuthall; Bethany Hughes; Nadja Smotrov; Candia M. Kenific; Jonathan C. Cruz; Deborah Walker; Melanie Bouthillette; George Nikov; Dan Savage; Valentina V. Jeliazkova-Mecheva; Damaris Diaz; Alexander A. Szewczak; Nathan Bays; Richard E. Middleton; Benito Munoz; Mark S. Shearman

Synthesis, SAR, and evaluation of aryl triazoles as novel gamma secretase modulators (GSMs) are presented in this communication. Starting from the literature and in-house leads, we evaluated a range of five-membered heterocycles as replacements for olefins commonly found in non-acid GSMs. 1,2,3-C-aryl-triazoles were identified as suitable replacements which exhibited good modulation of γ-secretase activity, excellent pharmacokinetics and good central lowering of Aβ42 in Sprague-Dawley rats.


ACS Medicinal Chemistry Letters | 2014

Delayed and Prolonged Histone Hyperacetylation with a Selective HDAC1/HDAC2 Inhibitor.

Joey L. Methot; Dawn Mampreian Hoffman; David J. Witter; Matthew G. Stanton; Paul Harrington; Christopher Hamblett; Phieng Siliphaivanh; Kevin J. Wilson; Jed L. Hubbs; Richard Heidebrecht; Astrid M. Kral; Nicole Ozerova; Judith C. Fleming; Hongmei Wang; Alexander A. Szewczak; Richard E. Middleton; Bethany Hughes; Jonathan C. Cruz; Brian B. Haines; Melissa Chenard; Candia M. Kenific; Andreas Harsch; J. Paul Secrist; Thomas A. Miller

The identification and in vitro and in vivo characterization of a potent SHI-1:2 are described. Kinetic analysis indicated that biaryl inhibitors exhibit slow binding kinetics in isolated HDAC1 and HDAC2 preparations. Delayed histone hyperacetylation and gene expression changes were also observed in cell culture, and histone acetylation was observed in vivo beyond disappearance of drug from plasma. In vivo studies further demonstrated that continuous target inhibition was well tolerated and efficacious in tumor-bearing mice, leading to tumor growth inhibition with either once-daily or intermittent administration.

Researchain Logo
Decentralizing Knowledge