Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan C. Hagopian is active.

Publication


Featured researches published by Jonathan C. Hagopian.


Nature Biotechnology | 2014

Efficient delivery of RNAi prodrugs containing reversible charge-neutralizing phosphotriester backbone modifications

Bryan R. Meade; Khirud Gogoi; Alexander S. Hamil; Caroline Palm-Apergi; Arjen van den Berg; Jonathan C. Hagopian; Aaron D. Springer; Akiko Eguchi; Apollo D. Kacsinta; Connor F Dowdy; Asaf Presente; Peter Lönn; Manuel Kaulich; Naohisa Yoshioka; Edwige Gros; Xian-Shu Cui; Steven F. Dowdy

RNA interference (RNAi) has great potential to treat human disease. However, in vivo delivery of short interfering RNAs (siRNAs), which are negatively charged double-stranded RNA macromolecules, remains a major hurdle. Current siRNA delivery has begun to move away from large lipid and synthetic nanoparticles to more defined molecular conjugates. Here we address this issue by synthesis of short interfering ribonucleic neutrals (siRNNs) whose phosphate backbone contains neutral phosphotriester groups, allowing for delivery into cells. Once inside cells, siRNNs are converted by cytoplasmic thioesterases into native, charged phosphodiester-backbone siRNAs, which induce robust RNAi responses. siRNNs have favorable drug-like properties, including high synthetic yields, serum stability and absence of innate immune responses. Unlike siRNAs, siRNNs avidly bind serum albumin to positively influence pharmacokinetic properties. Systemic delivery of siRNNs conjugated to a hepatocyte-specific targeting domain induced extended dose-dependent in vivo RNAi responses in mice. We believe that siRNNs represent a technology that will open new avenues for development of RNAi therapeutics.


Molecular Cell | 2008

A Sliding Docking Interaction Is Essential for Sequential and Processive Phosphorylation of an SR Protein by SRPK1

Jacky Chi Ki Ngo; Kayla Giang; Sutapa Chakrabarti; Chen-Ting Ma; Nhat Huynh; Jonathan C. Hagopian; Pieter C. Dorrestein; Xiang-Dong Fu; Joseph A. Adams; Gourisankar Ghosh

The 2.9 A crystal structure of the core SRPK1:ASF/SF2 complex reveals that the N-terminal half of the basic RS domain of ASF/SF2, which is destined to be phosphorylated, is bound to an acidic docking groove of SRPK1 distal to the active site. Phosphorylation of ASF/SF2 at a single site in the C-terminal end of the RS domain generates a primed phosphoserine that binds to a basic site in the kinase. Biochemical experiments support a directional sliding of the RS peptide through the docking groove to the active site during phosphorylation, which ends with the unfolding of a beta strand of the RRM domain and binding of the unfolded region to the docking groove. We further suggest that the priming of the first serine facilitates directional substrate translocation and efficient phosphorylation.


Journal of Biological Chemistry | 2005

Mass spectrometric and kinetic analysis of ASF/SF2 phosphorylation by SRPK1 and Clk/Sty.

Adolfo Velazquez-Dones; Jonathan C. Hagopian; Chen-Ting Ma; Xiang-Yang Zhong; Huilin Zhou; Gourisankar Ghosh; Xiang-Dong Fu; Joseph A. Adams

Assembly of the spliceosome requires the participation of SR proteins, a family of splicing factors rich in arginine-serine dipeptide repeats. The repeat regions (RS domains) are polyphosphorylated by the SRPK and Clk/Sty families of kinases. The two families of kinases have distinct enzymatic properties, raising the question of how they may work to regulate the function of SR proteins in RNA metabolism in mammalian cells. Here we report the first mass spectral analysis of the RS domain of ASF/SF2, a prototypical SR protein. We found that SRPK1 was responsible for efficient phosphorylation of a short stretch of amino acids in the N-terminal portion of the RS domain of ASF/SF2 while Clk/Sty was able to transfer phosphate to all available serine residues in the RS domain, indicating that SR proteins may be phosphorylated by different kinases in a stepwise manner. Both kinases bind with high affinity and use fully processive catalytic mechanisms to achieve either restrictive or complete RS domain phosphorylation. These findings have important implications on the regulation of SR proteins in vivo by the SRPK and Clk/Sty families of kinases.


Journal of Molecular Biology | 2008

Adaptable molecular interactions guide phosphorylation of the SR protein ASF/SF2 by SRPK1.

Jonathan C. Hagopian; Chen-Ting Ma; Bryan R. Meade; Claudio P. Albuquerque; Jacky Chi Ki Ngo; Gourisankar Ghosh; Patricia A. Jennings; Xiang-Dong Fu; Joseph A. Adams

The SR (arginine-serine rich) protein ASF/SF2 (also called human alternative splicing factor), an essential splicing factor, contains two functional modules consisting of tandem RNA recognition motifs (RRMs; RRM1-RRM2) and a C-terminal arginine-serine repeat region (RS domain, a domain rich in arginine-serine repeats). The SR-specific protein kinase (SRPK) 1 phosphorylates the RS domain at multiple serines using a directional (C-terminal-to-N-terminal) and processive mechanism--a process that directs the SR protein to the nucleus and influences protein-protein interactions associated with splicing function. To investigate how SRPK1 accomplishes this feat, the enzyme-substrate complex was analyzed using single-turnover and multiturnover kinetic methods. Deletion studies revealed that while recognition of the RS domain by a docking groove on SRPK1 is sufficient to initiate the processive and directional mechanism, continued processive phosphorylation in the presence of building repulsive charge relies on the fine-tuning of contacts with the RRM1-RRM2 module. An electropositive pocket in SRPK1 that stabilizes newly phosphorylated serines enhanced processive phosphorylation of later serines. These data indicate that SRPK1 uses stable, yet highly flexible protein-protein interactions to facilitate both early and late phases of the processive phosphorylation of SR proteins.


Journal of Molecular Biology | 2013

Partitioning RS domain phosphorylation in an SR protein through the CLK and SRPK protein kinases.

Brandon E. Aubol; Ryan M. Plocinik; Jonathan C. Hagopian; Chen-Ting Ma; Maria L. McGlone; Reeti Bandyopadhyay; Xiang-Dong Fu; Joseph A. Adams

SR proteins are essential splicing factors whose biological function is regulated through phosphorylation of their C-terminal RS domains. Prior studies have shown that cytoplasmic-nuclear translocalization of the SR protein SRSF1 is regulated by multisite phosphorylation of a long Arg-Ser repeat in the N-terminus of the RS domain while subnuclear localization is controlled by phosphorylation of a shorter Arg-Ser repeat along with several Ser-Pro dipeptides in the C-terminus of the RS domain. To better understand how these two kinases partition Arg-Ser versus Ser-Pro specificities, we monitored the phosphorylation of SRSF1 by CLK1 and SRPK1. Although SRPK1 initially binds at the center of the RS domain phosphorylating in an orderly, N-terminal direction, CLK1 makes widespread contacts in the RS domain and generates multiple enzyme-substrate complexes that induce a random addition mechanism. While SRPK1 rapidly phosphorylates N-terminal serines, SRPK1 and CLK1 display similar activities toward Arg-Ser repeats in the C-terminus, suggesting that these kinases may not separate function in a strict linear manner along the RS domain. CLK1 induces a unique gel shift in SRSF1 that is not the result of enhanced Arg-Ser phosphorylation but rather is the direct result of the phosphorylation of several Ser-Pro dipeptides. These prolines are important for binding and phosphorylation of the SR protein by CLK1 but not for the SRPK1-dependent reaction. The data establish a new view of SR protein regulation in which SRPK1 and CLK1 partition activities based on Ser-Pro versus Arg-Ser placement rather than on N- and C-terminal preferences along the RS domain.


Journal of Molecular Biology | 2009

Regiospecific phosphorylation control of the SR protein ASF/SF2 by SRPK1.

Chen-Ting Ma; Jonathan C. Hagopian; Gourisankar Ghosh; Xiang-Dong Fu; Joseph A. Adams

SR proteins (splicing factors containing arginine-serine repeats) are essential factors that control the splicing of precursor mRNA by regulating multiple steps in spliceosome development. The prototypical SR protein ASF/SF2 (human alternative splicing factor) contains two N-terminal RNA recognition motifs (RRMs) (RRM1 and RRM2) and a 50-residue C-terminal RS (arginine-serine-rich) domain that can be phosphorylated at numerous serines by the protein kinase SR-specific protein kinase (SRPK) 1. The RS domain [C-terminal domain that is rich in arginine-serine repeats (residues 198-248)] is further divided into N-terminal [RS1: N-terminal portion of the RS domain (residues 198-227)] and C-terminal [RS2: C-terminal portion of the RS domain (residues 228-248)] segments whose modification guides the nuclear localization of ASF/SF2. While previous studies revealed that SRPK1 phosphorylates RS1, regiospecific and temporal-specific control within the largely redundant RS domain is not well understood. To address this issue, we performed engineered footprinting and single-turnover experiments to determine where and how SRPK1 initiates phosphorylation within the RS domain. The data show that local sequence elements in the RS domain control the strong kinetic preference for RS1 phosphorylation. SRPK1 initiates phosphorylation in a small region of serines (initiation box) in the middle of the RS domain at the C-terminal end of RS1 and then proceeds in an N-terminal direction. This initiation process requires both a viable docking groove in the large lobe of SRPK1 and one RRM (RRM2) on the N-terminal flank of the RS domain. Thus, while local RS/SR content steers regional preferences in the RS domain, distal contacts with SRPK1 guide initiation and directional phosphorylation within these regions.


Biochemical Journal | 2014

N-terminus of the protein kinase CLK1 induces SR protein hyperphosphorylation

Brandon E. Aubol; Ryan M. Plocinik; Malik M. Keshwani; Maria L. McGlone; Jonathan C. Hagopian; Gourisankar Ghosh; Xiang-Dong Fu; Joseph A. Adams

SR proteins are essential splicing factors that are regulated through multisite phosphorylation of their RS (arginine/serine-rich) domains by two major families of protein kinases. The SRPKs (SR-specific protein kinases) efficiently phosphorylate the arginine/serine dipeptides in the RS domain using a conserved docking groove in the kinase domain. In contrast, CLKs (Cdc2-like kinases) lack a docking groove and phosphorylate both arginine/serine and serine-proline dipeptides, modifications that generate a hyperphosphorylated state important for unique SR protein-dependent splicing activities. All CLKs contain long flexible N-terminal extensions (140-300 residues) that resemble the RS domains present in their substrate SR proteins. We showed that the N-terminus in CLK1 contacts both the kinase domain and the RS domain of the SR protein SRSF1 (SR protein splicing factor 1). This interaction not only is essential for facilitating hyperphosphorylation, but also induces co-operative binding of SRSF1 to RNA. The N-terminus of CLK1 enhances the total phosphoryl contents of a panel of physiological substrates including SRSF1, SRSF2, SRSF5 and Tra2β1 (transformer 2β1) by 2-3-fold. These findings suggest that CLK1-dependent hyperphosphorylation is the result of a general mechanism in which the N-terminus acts as a bridge connecting the kinase domain and the RS domain of the SR protein.


Biochemistry | 2009

Allosteric interactions direct binding and phosphorylation of ASF/SF2 by SRPK1.

Nhat Huynh; Chen-Ting Ma; Ngoc Giang; Jonathan C. Hagopian; Jacky Chi Ki Ngo; Joseph A. Adams; Gourisankar Ghosh

ASF/SF2, a member of the serine-arginine (SR) protein family, has two RRM domains (RRM1 and RRM2) and a C-terminal domain rich in RS dipeptides. SR protein kinase 1 (SRPK1) phosphorylates approximately 12 of these serines using a semiprocessive mechanism. The X-ray structure of the ASF/SF2-SRPK1 complex revealed several features of the complex that raised intriguing questions about how the substrate is phosphorylated by the kinase. The part of the RS domain destined to be phosphorylated at later stages of the reaction docks to a kinase groove distal to the active site while the neighboring RRM2 binds near the active site [Ngo, J. C., et al. (2008) Mol. Cell 29, 563-576]. In this study, we investigate the interplay between the RS domain and RRM2 for stable association and phosphorylation of ASF/SF2. Despite several contacts in the enzyme-substrate complex, free RRM2 does not bind efficiently to SRPK1 unless the docking groove is occupied by the RS domain. This domain cross-talk enhances the processive phosphorylation of the RS domain. The RRM-SRPK1 contact residues control the folding of a critical beta-strand in RRM2. Unfolding of this structural element may force the N-terminal serines of the RS domain into the active site for sequential phosphorylation. Thus, ASF/SF2 represents a new class of substrates that use unique primary sequence to induce allosteric binding, processive phosphorylation, and product release.


Journal of Biological Chemistry | 2007

Structurally unique yeast and mammalian serine-arginine protein kinases catalyze evolutionarily conserved phosphorylation reactions.

Randall Lukasiewicz; Adolfo Velazquez-Dones; Nhat Huynh; Jonathan C. Hagopian; Xiang-Dong Fu; Joseph A. Adams; Gourisankar Ghosh

The mammalian serine-arginine (SR) protein, ASF/SF2, contains multiple contiguous RS dipeptides at the C terminus, and ∼12 of these serines are processively phosphorylated by the SR protein kinase 1 (SRPK1). We have recently shown that a docking motif in ASF/SF2 specifically interacts with a groove in SRPK1, and this interaction is necessary for processive phosphorylation. We previously showed that SRPK1 and its yeast ortholog Sky1p maintain their active conformations using diverse structural strategies. Here we tested if the mechanism of ASF/SF2 phosphorylation by SRPK is evolutionarily conserved. We show that Sky1p forms a stable complex with its heterologous mammalian substrate ASF/SF2 and processively phosphorylates the same sites as SRPK1. We further show that Sky1p utilizes the same docking groove to bind yeast SR-like protein Gbp2p and phosphorylates all three serines present in a contiguous RS dipeptide stretch. However, the mechanism of Gbp2p phosphorylation appears to be non-processive. Thus, there are physical attributes of SR and SR-like substrates that dictate the mechanism of phosphorylation, whereas the ability to processively phosphorylate substrates is inherent to SR protein kinases.


Molecular Biology of the Cell | 2005

Regulated Cellular Partitioning of SR Protein-specific Kinases in Mammalian Cells

Jian-Hua Ding; Xiang-Yang Zhong; Jonathan C. Hagopian; Marissa M. Cruz; Gourisankar Ghosh; James R. Feramisco; Joseph A. Adams; Xiang-Dong Fu

Collaboration


Dive into the Jonathan C. Hagopian's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiang-Dong Fu

University of California

View shared research outputs
Top Co-Authors

Avatar

Chen-Ting Ma

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nhat Huynh

University of California

View shared research outputs
Top Co-Authors

Avatar

Jacky Chi Ki Ngo

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bryan R. Meade

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

John Lew

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge