Jonathan C. Lee
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jonathan C. Lee.
Advanced Materials | 2012
Igor Aharonovich; Jonathan C. Lee; Andrew P. Magyar; Bob B. Buckley; Christopher G. Yale; D. D. Awschalom; Evelyn L. Hu
Homoepitaxial growth of single crystal diamond membranes is demonstrated employing a microwave plasma chemical vapor deposition technique. The membranes possess excellent structural, optical, and spin properties, which make them suitable for fabrication of optical microcavities for applications in quantum information processing, photonics, spintronics, and sensing.
Applied Physics Letters | 2014
Jonathan C. Lee; David O. Bracher; Shanying Cui; Kenichi Ohno; Claire A. McLellan; Xingyu Zhang; Paolo Andrich; Benjamín Alemán; Kasey J. Russell; Andrew P. Magyar; Igor Aharonovich; Ania C. Bleszynski Jayich; D. D. Awschalom; Evelyn L. Hu
The negatively-charged nitrogen vacancy center (NV) in diamond has generated significant interest as a platform for quantum information processing and sensing in the solid state. For most applications, high quality optical cavities are required to enhance the NV zero-phonon line (ZPL) emission. An outstanding challenge in maximizing the degree of NV-cavity coupling is the deterministic placement of NVs within the cavity. Here, we report photonic crystal nanobeam cavities coupled to NVs incorporated by a delta-doping technique that allows nanometer-scale vertical positioning of the emitters. We demonstrate cavities with Q up to ~24,000 and mode volume V ~
Applied Physics Letters | 2011
Andrew P. Magyar; Jonathan C. Lee; Andi M. Limarga; Igor Aharonovich; Fabian Rol; David R. Clarke; Mengbing Huang; Evelyn L. Hu
0.47({\lambda}/n)^{3}
Optics Express | 2012
Jonathan C. Lee; Igor Aharonovich; Andrew P. Magyar; Fabian Rol; Evelyn L. Hu
as well as resonant enhancement of the ZPL of an NV ensemble with Purcell factor of ~20. Our fabrication technique provides a first step towards deterministic NV-cavity coupling using spatial control of the emitters.
Applied Physics Letters | 2014
Andrew P. Magyar; David O. Bracher; Jonathan C. Lee; Igor Aharonovich; Evelyn L. Hu
The formation of single-crystal diamond membranes is an important prerequisite for the fabrication of high-quality optical cavities in this material. Diamond membranes fabricated using lift-off processes involving the creation of a damaged layer through ion implantation often suffer from residual ion damage, which severely limits their usefulness for photonic structures. The current work demonstrates that strategic etch removal of the most highly defective material yields thin, single-crystal diamond membranes with strong photoluminescence and a Raman signature approaching that of single-crystal bulk diamond. These optically active membranes can form the starting point for fabrication of high-quality optical resonators.
Nano Letters | 2014
Paolo Andrich; Benjamín Alemán; Jonathan C. Lee; Kenichi Ohno; Charles F. de las Casas; F. Joseph Heremans; Evelyn L. Hu; D. D. Awschalom
Optical coupling of an ensemble of silicon-vacancy (SiV) centers to single-crystal diamond microdisk cavities is demonstrated. The cavities are fabricated from a single-crystal diamond membrane generated by ion implantation and electrochemical liftoff followed by homo-epitaxial overgrowth. Whispering gallery modes spectrally overlap with the zero-phonon line (ZPL) of the SiV centers and exhibit quality factors ∼ 2200. Lifetime reduction from 1.8 ns to 1.48 ns is observed from SiV centers in the cavity compared to those in the membrane outside the cavity. These results are pivotal in developing diamond integrated photonics networks.
Laser & Photonics Reviews | 2013
Igor Aharonovich; Jonathan C. Lee; Andrew P. Magyar; David O. Bracher; Evelyn L. Hu
The exquisite mechanical properties of SiC have made it an important industrial material with applications in microelectromechanical devices and high power electronics. Recently, the optical properties of SiC have garnered attention for applications in photonics, quantum information, and spintronics. This work demonstrates the fabrication of microdisks formed from a p-N SiC epilayer material. The microdisk cavities fabricated from the SiC epilayer material exhibit quality factors of as high as 9200 and the approach is easily adaptable to the fabrication of SiC-based photonic crystals and other photonic and optomechanical devices.
arXiv: Materials Science | 2013
Igor Aharonovich; Jonathan C. Lee; Andrew P. Magyar; David O. Bracher; Evelyn L. Hu
The nitrogen-vacancy (NV) center in diamond is an attractive platform for quantum information and sensing applications because of its room temperature operation and optical addressability. A major research effort focuses on improving the quantum coherence of this defect in engineered micro- and nanoscale diamond particles (DPs), which could prove useful for high-resolution sensing in fluidic environments. In this work we fabricate cylindrical diamonds particles with finely tuned and highly reproducible sizes (diameter and height ranging from 100 to 700 and 500 nm to 2 μm, respectively) using high-purity, single-crystal diamond membranes with shallow-doped NV centers. We show that the spin coherence time of the NV centers in these particles exceeds 700 μs, opening the possibility for the creation of ultrahigh sensitivity micro- and nanoscale sensors. Moreover, these particles can be efficiently transferred into a water suspension and delivered to the region to probe. In particular, we introduce a DP suspension inside a microfluidic circuit and control position and orientation of the particles using an optical trapping apparatus. We demonstrate a DC magnetic sensitivity of 9 μT/√Hz in fluid as well as long-term trapping stability (>30 h), which paves the way toward the use of high-sensitivity pulse techniques on contactless probes manipulated within biological settings.
Laser & Photonics Reviews | 2013
Igor Aharonovich; Jonathan C. Lee; Andrew P. Magyar; David O. Bracher; Evelyn L. Hu
Engineering nanostructures from the bottom up enables the creation of carefully engineered complex structures that are not accessible via top down fabrication techniques, in particular, complex periodic structures for applications in photonics and sensing. In this work, we propose and demonstrate a bottom up approach that can be adopted and utilized to controllably build diamond nanostructures. A realization of periodic structures and optical wave-guiding is achieved by growing nanoscale single crystal diamond through a defined pattern.
Diamond and Related Materials | 2013
Jonathan C. Lee; Andrew P. Magyar; David O. Bracher; Igor Aharonovich; Evelyn L. Hu
Engineering nanostructures from the bottom up enables the creation of carefully engineered complex structures that are not accessible via top down fabrication techniques, in particular, complex periodic structures for applications in photonics and sensing. In this work, we propose and demonstrate a bottom up approach that can be adopted and utilized to controllably build diamond nanostructures. A realization of periodic structures and optical wave-guiding is achieved by growing nanoscale single crystal diamond through a defined pattern.