Jonathan C. Pober
Brown University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jonathan C. Pober.
The Astrophysical Journal | 2014
Aaron R. Parsons; Adrian Liu; James E. Aguirre; Zaki S. Ali; Richard Bradley; C. L. Carilli; David R. DeBoer; Matthew R. Dexter; Nicole E. Gugliucci; Daniel C. Jacobs; Pat Klima; David MacMahon; Jason Manley; David F. Moore; Jonathan C. Pober; Irina I. Stefan; William P. Walbrugh
We present new constraints on the 21cm Epoch of Reionization (EoR) power spectrum derived from 3 months of observing with a 32-antenna, dual-polarization deployment of the Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER) in South Africa. In this paper, we demonstrate the efficacy of the delay-spectrum approach to avoiding foregrounds, achieving over 8 orders of magnitude of foreground suppression (in mK). Combining this approach with a procedure for removing off-diagonal covariances arising from instrumental systematics, we achieve a best 2σ upper limit of (41mK) for k = 0.27 h Mpc−1 at z = 7.7. This limit falls within an order of magnitude of the brighter predictions of the expected 21cm EoR signal level. Using the upper limits set by these measurements, we generate new constraints on the brightness temperature of 21cm emission in neutral regions for various reionization models. We show that for several ionization scenarios, our measurements are inconsistent with cold reionization. That is, heating of the neutral intergalactic medium (IGM) is necessary to remain consistent with the constraints we report. Hence, we have suggestive evidence that by z = 7.7, the HI has been warmed from its cold primordial state, probably by X-rays from high-mass X-ray binaries or mini-quasars. The strength of this evidence depends on the ionization state of the IGM, which we are not yet able to constrain. This result is consistent with standard predictions for how reionization might have proceeded.We present new constraints on the 21 cm Epoch of Reionization (EoR) power spectrum derived from three months of observing with a 32 antenna, dual-polarization deployment of the Donald C. Backer Precision Array for Probing the Epoch of Reionization in South Africa. In this paper, we demonstrate the efficacy of the delay-spectrum approach to avoiding foregrounds, achieving over eight orders of magnitude of foreground suppression (in mK2). Combining this approach with a procedure for removing off-diagonal covariances arising from instrumental systematics, we achieve a best 2σ upper limit of (41 mK)2 for k = 0.27 h Mpc–1 at z = 7.7. This limit falls within an order of magnitude of the brighter predictions of the expected 21 cm EoR signal level. Using the upper limits set by these measurements, we generate new constraints on the brightness temperature of 21 cm emission in neutral regions for various reionization models. We show that for several ionization scenarios, our measurements are inconsistent with cold reionization. That is, heating of the neutral intergalactic medium (IGM) is necessary to remain consistent with the constraints we report. Hence, we have suggestive evidence that by z = 7.7, the H I has been warmed from its cold primordial state, probably by X-rays from high-mass X-ray binaries or miniquasars. The strength of this evidence depends on the ionization state of the IGM, which we are not yet able to constrain. This result is consistent with standard predictions for how reionization might have proceeded.
The Astrophysical Journal | 2015
Zaki S. Ali; Aaron R. Parsons; Haoxuan Zheng; Jonathan C. Pober; Adrian Liu; James E. Aguirre; Richard Bradley; G. Bernardi; C. L. Carilli; Carina Cheng; David R. DeBoer; Matthew R. Dexter; Jasper Grobbelaar; Jasper Horrell; Daniel C. Jacobs; Patricia J. Klima; David MacMahon; Matthys Maree; David F. Moore; Nima Razavi; Irina I. Stefan; William P. Walbrugh; Andre Walker
© 2015. The American Astronomical Society. All rights reserved. In this paper, we report new limits on 21 cm emission from cosmic reionization based on a 135 day observing campaign with a 64-element deployment of the Donald C. Backer Precision Array for Probing the Epoch of Reionization in South Africa. This work extends the work presented in Parsons et al. with more collecting area, a longer observing period, improved redundancy-based calibration, improved fringe-rate filtering, and updated power-spectral analysis using optimal quadratic estimators. The result is a new 2σ upper limit on Δ2(k) of (22.4 mK)2 in the range < k < 0.5h Mpc-1 at z = 8.4. This represents a three-fold improvement over the previous best upper limit. As we discuss in more depth in a forthcoming paper, this upper limit supports and extends previous evidence against extremely cold reionization scenarios. We conclude with a discussion of implications for future 21 cm reionization experiments, including the newly funded Hydrogen Epoch of Reionization Array.
The Astrophysical Journal | 2012
Aaron R. Parsons; Jonathan C. Pober; Matthew McQuinn; Daniel C. Jacobs; James E. Aguirre
Telescopes aiming to measure 21 cm emission from the Epoch of Reionization must toe a careful line, balancing the need for raw sensitivity against the stringent calibration requirements for removing bright foregrounds. It is unclear what the optimal design is for achieving both of these goals. Via a pedagogical derivation of an interferometers response to the power spectrum of 21 cm reionization fluctuations, we show that even under optimistic scenarios first-generation arrays will yield low-signal-to-noise detections, and that different compact array configurations can substantially alter sensitivity. We explore the sensitivity gains of array configurations that yield high redundancy in the uv-plane—configurations that have been largely ignored since the advent of self-calibration for high-dynamic-range imaging. We first introduce a mathematical framework to generate optimal minimum-redundancy configurations for imaging. We contrast the sensitivity of such configurations with high-redundancy configurations, finding that high-redundancy configurations can improve power-spectrum sensitivity by more than an order of magnitude. We explore how high-redundancy array configurations can be tuned to various angular scales, enabling array sensitivity to be directed away from regions of the uv-plane (such as the origin) where foregrounds are brighter and instrumental systematics are more problematic. We demonstrate that a 132 antenna deployment of the Precision Array for Probing the Epoch of Reionization observing for 120 days in a high-redundancy configuration will, under ideal conditions, have the requisite sensitivity to detect the power spectrum of the 21 cm signal from reionization at a 3σ level at k < 0.25 h Mpc–1 in a bin of Δln k = 1. We discuss the tradeoffs of low- versus high-redundancy configurations.
Publications of the Astronomical Society of the Pacific | 2017
David R. DeBoer; Aaron R. Parsons; James E. Aguirre; Paul Alexander; Zaki S. Ali; Adam P. Beardsley; G. Bernardi; Judd D. Bowman; Richard Bradley; C. L. Carilli; Carina Cheng; Eloy de Lera Acedo; Joshua S. Dillon; A. Ewall-Wice; Gcobisa Fadana; Nicolas Fagnoni; Randall Fritz; Steve Furlanetto; Brian Glendenning; Bradley Greig; Jasper Grobbelaar; B. J. Hazelton; Jacqueline N. Hewitt; Jack Hickish; Daniel C. Jacobs; Austin Julius; MacCalvin Kariseb; Saul A. Kohn; Telalo Lekalake; Adrian Liu
The Hydrogen Epoch of Reionization Array (HERA http://reionization.org) is a staged experiment that uses the unique properties of the 21-cm line from neutral hydrogen to probe the Epoch of Reionization (EOR). During this epoch, roughly 0.3-1 billion years after the Big Bang, the first galaxies and black holes heated and reionized the early Universe. Direct observation of the large scale structure of reionization and its evolution with time will have a profound impact on our understanding of the birth of the first galaxies and black holes, their influence on the intergalactic medium (IGM), and cosmology. This paper will provide an overview of the project and describe the design of the HERA receiving element.
The Astrophysical Journal | 2015
Nithyanandan Thyagarajan; Daniel C. Jacobs; Judd D. Bowman; N. Barry; A. P. Beardsley; G. Bernardi; F. Briggs; R. J. Cappallo; P. Carroll; B. E. Corey; A. de Oliveira-Costa; Joshua S. Dillon; D. Emrich; A. Ewall-Wice; L. Feng; R. Goeke; L. J. Greenhill; B. J. Hazelton; Jacqueline N. Hewitt; Natasha Hurley-Walker; M. Johnston-Hollitt; David L. Kaplan; J. Kasper; Han-Seek Kim; P. Kittiwisit; E. Kratzenberg; E. Lenc; J. Line; Abraham Loeb; Colin J. Lonsdale
Detection of 21 cm emission of H I from the epoch of reionization, at redshifts > z 6, is limited primarily by foreground emission. We investigate the signatures of wide-field measurements and an all-sky foreground model using the delay spectrum technique that maps the measurements to foreground object locations through signal delays between antenna pairs. We demonstrate interferometric measurements are inherently sensitive to all scales, including the largest angular scales, owing to the nature of wide-field measurements. These wide-field effects are generic to all observations but antenna shapes impact their amplitudes substantially. A dish-shaped antenna yields the most desirable features from a foreground contamination viewpoint, relative to a dipole or a phased array. Comparing data from recent Murchison Widefield Array observations, we demonstrate that the foreground signatures that have the largest impact on the H I signal arise from power received far away from the primary field of view. We identify diffuse emission near the horizon as a significant contributing factor, even on wide antenna spacings that usually represent structures on small scales. For signals entering through the primary field of view, compact emission dominates the foreground contamination. These two mechanisms imprint a characteristic pitchfork signature on the “foreground wedge” in Fourier delay space. Based on these results, we propose that selective down-weighting of data based on antenna spacing and time can mitigate foreground contamination substantially by a factor of ∼100 with negligible loss of sensitivity.
The Astronomical Journal | 2013
Jonathan C. Pober; Aaron R. Parsons; David R. DeBoer; Patrick McDonald; Matthew McQuinn; James E. Aguirre; Zaki S. Ali; Richard Bradley; Tzu-Ching Chang; M. F. Morales
This work describes a new instrument optimized for a detection of the neutral hydrogen 21 cm power spectrum between redshifts of 0.5 and 1.5: the Baryon Acoustic Oscillation Broadband and Broad-beam (BAOBAB) array. BAOBAB will build on the efforts of a first generation of 21 cm experiments that are targeting a detection of the signal from the Epoch of Reionization at z ~ 10. At z ~ 1, the emission from neutral hydrogen in self-shielded overdense halos also presents an accessible signal, since the dominant, synchrotron foreground emission is considerably fainter than at redshift 10. The principle science driver for these observations are baryon acoustic oscillations in the matter power spectrum which have the potential to act as a standard ruler and constrain the nature of dark energy. BAOBAB will fully correlate dual-polarization antenna tiles over the 600-900 MHz band with a frequency resolution of 300 kHz and a system temperature of 50 K. The number of antennas will grow in staged deployments, and reconfigurations of the array will allow for both traditional imaging and high power spectrum sensitivity operations. We present calculations of the power spectrum sensitivity for various array sizes, with a 35 element array measuring the cosmic neutral hydrogen fraction as a function of redshift, and a 132 element system detecting the BAO features in the power spectrum, yielding a 1.8% error on the z ~ 1 distance scale, and, in turn, significant improvements to constraints on the dark energy equation of state over an unprecedented range of redshifts from ~0.5 to 1.5.
The Astrophysical Journal | 2015
Daniel C. Jacobs; Jonathan C. Pober; Aaron R. Parsons; James E. Aguirre; Zaki S. Ali; Judd D. Bowman; Richard Bradley; C. L. Carilli; David R. DeBoer; Matthew R. Dexter; Nicole E. Gugliucci; Pat Klima; Adrian Liu; David MacMahon; Jason Manley; David F. Moore; Irina I. Stefan; William P. Walbrugh
The epoch of the reionization (EoR) power spectrum is expected to evolve strongly with redshift, and it is this variation with cosmic history that will allow us to begin to place constraints on the physics of reionization. The primary obstacle to the measurement of the EoR power spectrum is bright foreground emission. We present an analysis of observations from the Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER) telescope, which place new limits on the H i power spectrum over the redshift range of , extending previously published single-redshift results to cover the full range accessible to the instrument. To suppress foregrounds, we use filtering techniques that take advantage of the large instrumental bandwidth to isolate and suppress foreground leakage into the interesting regions of k-space. Our 500 hr integration is the longest such yet recorded and demonstrates this method to a dynamic range of 104. Power spectra at different points across the redshift range reveal the variable efficacy of the foreground isolation. Noise-limited measurements of Δ2 at k = 0.2 hr Mpc−1 and z = 7.55 reach as low as (48 mK)2 (1σ). We demonstrate that the size of the error bars in our power spectrum measurement as generated by a bootstrap method is consistent with the fluctuations due to thermal noise. Relative to this thermal noise, most spectra exhibit an excess of power at a few sigma. The likely sources of this excess include residual foreground leakage, particularly at the highest redshift, unflagged radio frequency interference, and calibration errors. We conclude by discussing data reduction improvements that promise to remove much of this excess.
The Astrophysical Journal | 2015
Jonathan C. Pober; Zaki S. Ali; Aaron R. Parsons; Matthew McQuinn; James E. Aguirre; G. Bernardi; Richard Bradley; C. L. Carilli; Carina Cheng; David R. DeBoer; Matthew R. Dexter; Steven R. Furlanetto; Jasper Grobbelaar; Jasper Horrell; Daniel C. Jacobs; Patricia J. Klima; Saul A. Kohn; Adrian Liu; David MacMahon; Matthys Maree; Andrei Mesinger; David F. Moore; Nima Razavi-Ghods; Irina I. Stefan; William P. Walbrugh; Andre Walker; Haoxuan Zheng
© 2015. The American Astronomical Society. All rights reserved. We present constraints on both the kinetic temperature of the intergalactic medium (IGM) at z = 8.4, and on models for heating the IGM at high-redshift with X-ray emission from the first collapsed objects. These constraints are derived using a semi-analytic method to explore the new measurements of the 21 cm power spectrum from the Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER), which were presented in a companion paper, Ali et al. Twenty-one cm power spectra with amplitudes of hundreds of mK2 can be generically produced if the kinetic temperature of the IGM is significantly below the temperature of the cosmic microwave background (CMB); as such, the new results from PAPER place lower limits on the IGM temperature at z = 8.4. Allowing for the unknown ionization state of the IGM, our measurements find the IGM temperature to be above ≈5 K for neutral fractions between 10% and 85%, above ≈7 K for neutral fractions between 15% and 80%, or above ≈10 K for neutral fractions between 30% and 70%. We also calculate the heating of the IGM that would be provided by the observed high redshift galaxy population, and find that for most models, these galaxies are sufficient to bring the IGM temperature above our lower limits. However, there are significant ranges of parameter space that could produce a signal ruled out by the PAPER measurements; models with a steep drop-off in the star formation rate density at high redshifts or with relatively low values for the X-ray to star formation rate efficiency of high redshift galaxies are generally disfavored. The PAPER measurements are consistent with (but do not constrain) a hydrogen spin temperature above the CMB temperature, a situation which we find to be generally predicted if galaxies fainter than the current detection limits of optical/NIR surveys are included in calculations of X-ray heating.
Publications of the Astronomical Society of Australia | 2015
A. R. Offringa; R. B. Wayth; Natasha Hurley-Walker; David L. Kaplan; N. Barry; A. P. Beardsley; M. E. Bell; G. Bernardi; Judd D. Bowman; F. Briggs; J. R. Callingham; R. J. Cappallo; P. Carroll; A. A. Deshpande; Joshua S. Dillon; K. S. Dwarakanath; A. Ewall-Wice; L. Feng; Bi-Qing For; B. M. Gaensler; L. J. Greenhill; Paul Hancock; B. J. Hazelton; Jacqueline N. Hewitt; L. Hindson; Daniel C. Jacobs; M. Johnston-Hollitt; A. D. Kapińska; Han-Seek Kim; P. Kittiwisit
This is the Accepted Manuscript version of the following article: A. R. Offringa, et al., “The low-frequency environment of the Murchison Widefield Array: radio-frequency interference analysis and mitigation”, Publications of the Astronomical Society of Australia, Vol. 32, March 2015. The final published version is available at: https://doi.org/10.1017/pasa.2015.7
The Astrophysical Journal | 2011
Daniel C. Jacobs; James E. Aguirre; Aaron R. Parsons; Jonathan C. Pober; Richard Bradley; C. L. Carilli; Nicole E. Gugliucci; Jason Manley; Carel van der Merwe; David F. Moore; Chaitali R. Parashare
We present observations from the Precision Array for Probing the Epoch of Reionization (PAPER) in South Africa, observed in May and September 2010. Using two nights of drift scanning with PAPER’s 60 ◦ FWHM beam we have made a map covering the entire sky below +10 degrees declination with an effective center frequency of 145 MHz, a 70-MHz bandwidth, and a resolution of 26 ′ . A 4800 square-degree region of this large map with the lowest Galactic emission reaches an RMS of 0.7 Jy. We establish an absolute flux scale using sources from the 160-MHz Culgoora catalog. Using the 408-MHz Molonglo Reference Catalog (MRC) as a finding survey, we identify counterparts to 480 sources in our maps, and compare our fluxes to the MRC and to 332 sources in the Culgoora catalog. For both catalogs, the ratio of PAPER to catalog flux averages to 1, with a standard deviation of 50%. This measured variation is consistent with comparisons between independent catalogs observed at different bands. The PAPER data represent new 145-MHz flux measurements for a large number of sources in the band expected to encompass cosmic reionization, and represents a significant step toward establishing a model for removing foregrounds to the reionization signal. Subject headings: dark ages, reionization, first stars — catalogs — instrumentation: interferometers