Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan C. Strefford is active.

Publication


Featured researches published by Jonathan C. Strefford.


Blood | 2009

Deregulated expression of cytokine receptor gene, CRLF2, is involved in lymphoid transformation in B-cell precursor acute lymphoblastic leukemia

Lisa J. Russell; Melania Capasso; Inga Vater; Takashi Akasaka; Olivier A. Bernard; María José Calasanz; Thiruppavaii Chandrasekaran; Elise Chapiro; Stephan Gesk; Mike Griffiths; David S. Guttery; Claudia Haferlach; Lana Harder; Olaf Heidenreich; Julie Irving; Lyndal Kearney; Florence Nguyen-Khac; Lee Machado; Lynne Minto; Aneela Majid; Anthony V. Moorman; Heather Morrison; Vikki Rand; Jonathan C. Strefford; Claire Schwab; Holger Tönnies; Martin J. S. Dyer; Reiner Siebert; Christine J. Harrison

We report 2 novel, cryptic chromosomal abnormalities in precursor B-cell acute lymphoblastic leukemia (BCP-ALL): a translocation, either t(X;14)(p22;q32) or t(Y;14)(p11;q32), in 33 patients and an interstitial deletion, either del(X)(p22.33p22.33) or del(Y)(p11.32p11.32), in 64 patients, involving the pseudoautosomal region (PAR1) of the sex chromosomes. The incidence of these abnormalities was 5% in childhood ALL (0.8% with the translocation, 4.2% with the deletion). Patients with the translocation were older (median age, 16 years), whereas the patients with the deletion were younger (median age, 4 years). The 2 abnormalities result in deregulated expression of the cytokine receptor, cytokine receptor-like factor 2, CRLF2 (also known as thymic stromal-derived lymphopoietin receptor, TSLPR). Overexpression of CRLF2 was associated with activation of the JAK-STAT pathway in cell lines and transduced primary B-cell progenitors, sustaining their proliferation and indicating a causal role of CRLF2 overexpression in lymphoid transformation. In Down syndrome (DS) ALL and 2 non-DS BCP-ALL cell lines, CRLF2 deregulation was associated with mutations of the JAK2 pseudokinase domain, suggesting oncogenic cooperation as well as highlighting a link between non-DS ALL and JAK2 mutations.


Leukemia | 2015

Recurrent mutations refine prognosis in chronic lymphocytic leukemia

Panagiotis Baliakas; Anastasia Hadzidimitriou; La. Sutton; Davide Rossi; E. Minga; Neus Villamor; Marta Larrayoz; Jana Kmínková; Andreas Agathangelidis; Zadie Davis; Eugen Tausch; Evangelia Stalika; Barbara Kantorová; Larry Mansouri; Lydia Scarfò; Diego Cortese; Veronika Navrkalová; Mj. Rose-Zerilli; Karin E. Smedby; Gunnar Juliusson; Achilles Anagnostopoulos; A. Makris; Alba Navarro; Julio Delgado; David Oscier; Chrysoula Belessi; Stephan Stilgenbauer; Paolo Ghia; Šárka Pospíšilová; G. Gaidano

Through the European Research Initiative on chronic lymphocytic leukemia (CLL) (ERIC), we screened 3490 patients with CLL for mutations within the NOTCH1 (n=3334), SF3B1 (n=2322), TP53 (n=2309), MYD88 (n=1080) and BIRC3 (n=919) genes, mainly at diagnosis (75%) and before treatment (>90%). BIRC3 mutations (2.5%) were associated with unmutated IGHV genes (U-CLL), del(11q) and trisomy 12, whereas MYD88 mutations (2.2%) were exclusively found among M-CLL. NOTCH1, SF3B1 and TP53 exhibited variable frequencies and were mostly enriched within clinically aggressive cases. Interestingly, as the timespan between diagnosis and mutational screening increased, so too did the incidence of SF3B1 mutations; no such increase was observed for NOTCH1 mutations. Regarding the clinical impact, NOTCH1 mutations, SF3B1 mutations and TP53 aberrations (deletion/mutation, TP53ab) correlated with shorter time-to-first-treatment (P<0.0001) in 889 treatment-naive Binet stage A cases. In multivariate analysis (n=774), SF3B1 mutations and TP53ab along with del(11q) and U-CLL, but not NOTCH1 mutations, retained independent significance. Importantly, TP53ab and SF3B1 mutations had an adverse impact even in U-CLL. In conclusion, we support the clinical relevance of novel recurrent mutations in CLL, highlighting the adverse impact of SF3B1 and TP53 mutations, even independent of IGHV mutational status, thus underscoring the need for urgent standardization/harmonization of the detection methods.


Blood | 2013

The clinical significance of NOTCH1 and SF3B1 mutations in the UK LRF CLL4 trial

David Oscier; Matthew J. Rose-Zerilli; Nils Winkelmann; David Gonzalez de Castro; Belen Gomez; Jade Forster; Helen Parker; Anton Parker; Anne Gardiner; Andrew Collins; Monica Else; Nicholas C.P. Cross; Daniel Catovsky; Jonathan C. Strefford

NOTCH1 and SF3B1 mutations have been previously reported to have prognostic significance in chronic lymphocytic leukemia but to date they have not been validated in a prospective, controlled clinical trial. We have assessed the impact of these mutations in a cohort of 494 patients treated within the randomized phase 3 United Kingdom Leukaemia Research Fund Chronic Lymphocytic Leukemia 4 (UK LRF CCL4) trial that compared chlorambucil and fludarabine with and without cyclophosphamide in previously untreated patients. We investigated the relationship of mutations in NOTCH1 (exon 34) and SF3B1 (exon 14-16) to treatment response, survival and a panel of established biologic variables. NOTCH1 and SF3B1 mutations were found in 10% and17% of patients, respectively. NOTCH1 mutations correlated with unmutated IGHV genes, trisomy 12, high CD38/ ZAP-70 expression and were associated with reduced overall (median 54.8 vs 74.6 months, P = .02) and progression-free (median 22.0 vs 26.4 months, P = .02) survival. SF3B1 mutations were significantly associated with high CD38 expression and with shorter overall survival (median 54.3 vs 79.0 months, P < .001). Furthermore, multivariate analysis, including baseline clinical variables, treatment, and adverse prognostic factors demonstrated that although TP53 alterations remained the most informative marker of dismal survival in this cohort, NOTCH1 (HR 1.58, P = .03) and SF3B1 (HR 1.52, P = .01) mutations have added independent prognostic value.


Blood | 2009

A comprehensive analysis of the CDKN2A gene in childhood acute lymphoblastic leukemia reveals genomic deletion, copy number neutral loss of heterozygosity, and association with specific cytogenetic subgroups.

Sarina Sulong; Anthony V. Moorman; Julie Irving; Jonathan C. Strefford; Zoe J. Konn; Marian Case; Lynne Minto; Kerry E. Barber; Helen Parker; Sarah L. Wright; Adam Stewart; Simon Bailey; Nick Bown; Andrew G. Hall; Christine J. Harrison

Inactivation of the tumor suppressor gene, CDKN2A, can occur by deletion, methylation, or mutation. We assessed the principal mode of inactivation in childhood acute lymphoblastic leukemia (ALL) and frequency in biologically relevant subgroups. Mutation or methylation was rare, whereas genomic deletion occurred in 21% of B-cell precursor ALL and 50% of T-ALL patients. Single nucleotide polymorphism arrays revealed copy number neutral (CNN) loss of heterozygosity (LOH) in 8% of patients. Array-based comparative genomic hybridization demonstrated that the mean size of deletions was 14.8 Mb and biallelic deletions composed a large and small deletion (mean sizes, 23.3 Mb and 1.4 Mb). Among 86 patients, only 2 small deletions were below the resolution of detection by fluorescence in situ hybridization. Patients with high hyperdiploidy, ETV6-RUNX1, or 11q23/MLL rearrangements had low rates of deletion (11%, 15%, 13%), whereas patients with t(9;22), t(1;19), TLX3, or TLX1 rearrangements had higher frequencies (61%, 42%, 78%, and 89%). In conclusion, CDKN2A deletion is a significant secondary abnormality in childhood ALL strongly correlated with phenotype and genotype. The variation in the incidence of CDKN2A deletions by cytogenetic subgroup may explain its inconsistent association with outcome. CNN LOH without apparent CDKN2A inactivation suggests the presence of other relevant genes in this region.


British Journal of Haematology | 2005

Interphase molecular cytogenetic screening for chromosomal abnormalities of prognostic significance in childhood acute lymphoblastic leukaemia: a UK Cancer Cytogenetics Group Study.

Christine J. Harrison; Anthony V. Moorman; Kerry E. Barber; Zoë J. Broadfield; Kan L. Cheung; Rachel L. Harris; G. Reza Jalali; Hazel M. Robinson; Jonathan C. Strefford; Adam Stewart; Sarah Wright; Mike Griffiths; Fiona M. Ross; Louise Harewood; Mary Martineau

Interphase fluorescence in situ hybridization (iFISH) was used independently to reveal chromosomal abnormalities of prognostic importance in a large, consecutive series of children (n = 2367) with acute lymphoblastic leukaemia (ALL). The fusions, TEL/AML1 and BCR/ABL, and rearrangements of the MLL gene occurred at frequencies of 22% (n = 447/2027) (25% in B‐lineage ALL), 2% (n = 43/2027) and 2% (n = 47/2016) respectively. There was considerable variation in iFISH signal patterns both between and within patient samples. The TEL/AML1 probe showed the highest incidence of variation (59%, n = 524/884), which included 38 (2%) patients with clustered, multiple copies of AML1. We were thus able to define amplification of AML1 as a new recurrent abnormality in ALL, associated with a poor prognosis. Amplification involving the ABL gene, a rare recurrent abnormality confined to T ALL patients, was identified for the first time. The use of centromeric probes revealed significant hidden high hyperdiploidy of 33% and 59%, respectively, in patients with normal (n = 21/64) or failed (n = 32/54) cytogenetic results. The iFISH contributed significantly to the high success rate of 91% (n = 2114/2323) and the remarkable abnormality detection rate of 89% (n = 1879/2114). This study highlights the importance of iFISH as a complementary tool to cytogenetics in routine screening for significant chromosomal abnormalities in ALL.


Oncogene | 2007

Genome complexity in acute lymphoblastic leukemia is revealed by array-based comparative genomic hybridization.

Jonathan C. Strefford; Helen Worley; Kerry E. Barber; Sarah L. Wright; Adam Stewart; H M Robinson; G Bettney; F W van Delft; M.G. Atherton; Teresa Davies; Mike Griffiths; Sandra Hing; Fiona M. Ross; Polly Talley; Vaskar Saha; Anthony V. Moorman; Christine J. Harrison

Chromosomal abnormalities are important for the classification and risk stratification of patients with acute lymphoblastic leukemia (ALL). However, approximately 30% of childhood and 50% of adult patients lack abnormalities with clinical relevance. Here, we describe the use of array-based comparative genomic hybridization (aCGH) to identify copy number alterations (CNA) in 58 ALL patients. CNA were identified in 83% of cases, and most frequently involved chromosomes 21 (n=42), 9 (n=21), 6 (n=16), 12 (n=11), 15 (n=11), 8 (n=10) and 17 (n=10). Deletions of 6q (del(6q)) were heterogeneous in size, in agreement with previous data, demonstrating the sensitivity of aCGH to measure CNA. Although 9p deletions showed considerable variability in both the extent and location, all encompassed the CDKN2A locus. Six patients showed del(12p), with a common region encompassing the ETV6 gene. Complex CNA were observed involving chromosomes 6 (n=2), 15 (n=2) and 21 (n=11) with multiple regions of loss and gain along each chromosome. Chromosome 21 CNA shared a common region of gain, with associated subtelomeric deletions. Other recurrent findings included dim(13q), dim(16q) and enh(17q). This is the first report of genome-wide detection of CNA in ALL patients using aCGH, and it has demonstrated a higher level of karyotype complexity than anticipated from conventional cytogenetic analysis.


Blood | 2013

Two main genetic pathways lead to the transformation of chronic lymphocytic leukemia to Richter syndrome

Ekaterina Chigrinova; Andrea Rinaldi; Ivo Kwee; Davide Rossi; Paola M. V. Rancoita; Jonathan C. Strefford; David Oscier; Kostas Stamatopoulos; Theodora Papadaki; Françoise Berger; Ken H. Young; Fiona Murray; Richard Rosenquist; Timothy C. Greiner; Wing C. Chan; Ester Orlandi; Marco Lucioni; Roberto Marasca; Giorgio Inghirami; Marco Ladetto; Francesco Forconi; Sergio Cogliatti; Hana Votavova; Steven H. Swerdlow; Stephan Stilgenbauer; Miguel A. Piris; András Matolcsy; Dominic V. Spagnolo; Eugene Nikitin; Alberto Zamò

Richter syndrome (RS) occurs in up to 15% of patients with chronic lymphocytic leukemia (CLL). Although RS, usually represented by the histologic transformation to a diffuse large B-cell lymphoma (DLBCL), is associated with a very poor outcome, especially when clonally related to the preexisting CLL, the mechanisms leading to RS have not been clarified. To better understand the pathogenesis of RS, we analyzed a series of cases including 59 RS, 28 CLL phase of RS, 315 CLL, and 127 de novo DLBCL. RS demonstrated a genomic complexity intermediate between CLL and DLBCL. Cell-cycle deregulation via inactivation of TP53 and of CDKN2A was a main mechanism in the histologic transformation from CLL phase, being present in approximately one half of the cases, and affected the outcome of the RS patients. A second major subgroup was characterized by the presence of trisomy 12 and comprised one third of the cases. Although RS shared some of the lesions seen in de novo DLBCL, its genomic profile was clearly separate. The CLL phase preceding RS had not a generalized increase in genomic complexity compared with untransformed CLL, but it presented clear differences in the frequency of specific genetic lesions.


Leukemia | 2011

13q deletion anatomy and disease progression in patients with chronic lymphocytic leukemia

Helen L. Parker; Matthew J. Rose-Zerilli; Anton Parker; Tracy Chaplin; R Wade; Anne Gardiner; Mike Griffiths; Andrew Collins; Bryan D. Young; David Oscier; Jonathan C. Strefford

Historically, genes targeted by recurrent chromosomal deletions have been identified within the smallest genomic region shared in all patients, the minimally deleted region (MDR). However, deletions this small do not occur in all patients and are a simplification of the impact larger heterogeneous deletions have during carcinogenesis. We use the example of 13q14 deletions in chronic lymphocytic leukemia to show that genes outside MDRs are associated with disease progression. Genomic profiling of 224 patients identified 205 copy number alterations on chromosome 13 in 132 cases. Deletions including DLEU2 were heterogeneous (845 Kb–96.2 Mb) and identified two breakpoint cluster regions within short interspersed nuclear elements proximal to DLEU2 and within long interspersed nuclear elements/L1 repeats distal to GUCY1B2. After defining a deletion class on the basis of size and location, we show that (a) at diagnosis, larger deletions (class II) were associated with a significantly increased risk of disease progression (odds ratio=12.3; P=0.005), (b) in progressive patients, class II deletions were enriched (P=0.02) and (c) this association was independent of IgVH mutational status, ZAP70 expression and ATM/TP53 deletion. Deletion of a 1 Mb gene cluster (48.2–49.2 Mb), including SETDB2, PHF11 and RCBTB1, was significantly associated (P<0.01) with disease progression. Here, we show that the deletion of genes outside MDRs can influence clinical outcome.


Blood | 2011

Genomic characterization implicates iAMP21 as a likely primary genetic event in childhood B-cell precursor acute lymphoblastic leukemia

Vikki Rand; Helen Parker; Lisa J. Russell; Claire Schwab; Hannah M. Ensor; Julie Irving; Lisa Jones; Dino Masic; Lynne Minto; Heather Morrison; Sarra L. Ryan; Hazel M. Robinson; Paul Sinclair; Anthony V. Moorman; Jonathan C. Strefford; Christine J. Harrison

Intrachromosomal amplification of chromosome 21 (iAMP21) defines a distinct subgroup of childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL) that has a dismal outcome when treated with standard therapy. For improved diagnosis and risk stratification, the initiating genetic events need to be elucidated. To investigate the genetic basis of BCP-ALL, genomes of 94 iAMP21 patients were interrogated by arrays, FISH, and multiplex ligation-dependent probe amplification. Most copy number alterations targeted chromosome 21, reinforcing the complexity of this chromosome. The common region of amplification on chromosome 21 was refined to a 5.1-mb region that included RUNX1, miR-802, and genes mapping to the Down syndrome critical region. Recurrent abnormalities affecting genes in key pathways were identified: IKZF1 (22%), CDKN2A/B (17%), PAX5 (8%), ETV6 (19%), and RB1 (37%). Investigation of clonal architecture provided evidence that these abnormalities, and P2RY8-CRLF2, were secondary to chromosome 21 rearrangements. Patient outcome was uniformly poor with standard therapy irrespective of the presence or absence of these changes. This study has provided evidence that chromosome 21 instability is the only anomaly among those so far investigated that is common to all iAMP21 patients, and therefore the initiating event is likely to be found among the complex structural rearrangements of this abnormal chromosome.


Leukemia | 2013

Distinct patterns of novel gene mutations in poor-prognostic stereotyped subsets of chronic lymphocytic leukemia : the case of SF3B1 and subset #2

Jonathan C. Strefford; Lesley Ann Sutton; Panagiotis Baliakas; Andreas Agathangelidis; Jitka Malčíková; Karla Plevová; Lydia Scarfò; Zadie Davis; Evangelia Stalika; Diego Cortese; Nicola Cahill; Lone Bredo Pedersen; P. F. Di Celle; Tatiana Tzenou; Christian H. Geisler; Panagiotis Panagiotidis; A W Langerak; Nicholas Chiorazzi; Šárka Pospíšilová; David Oscier; Frederic Davi; Chrysoula Belessi; Larry Mansouri; Paolo Ghia; Kostas Stamatopoulos; Richard Rosenquist

Recent studies have revealed recurrent mutations of the NOTCH1, SF3B1 and BIRC3 genes in chronic lymphocytic leukemia (CLL), especially among aggressive, chemorefractory cases. Nevertheless, it is currently unknown whether their presence may differ in subsets of patients carrying stereotyped B-cell receptors and also exhibiting distinct prognoses. Here, we analyzed the mutation status of NOTCH1, SF3B1 and BIRC3 in three subsets with particularly poor prognosis, that is, subset #1, #2 and #8, aiming to explore links between genetic aberrations and immune signaling. A remarkably higher frequency of SF3B1 mutations was revealed in subset #2 (44%) versus subset #1 and #8 (4.6% and 0%, respectively; P<0.001). In contrast, the frequency of NOTCH1 mutations in subset #2 was only 8%, lower than the frequency observed in either subset #1 or #8 (19% and 14%, respectively; P=0.04 for subset #1 versus #2). No associations were found for BIRC3 mutations that overall were rare. The apparent non-random association of certain mutations with stereotyped CLL subsets alludes to subset-biased acquisition of genomic aberrations, perhaps consistent with particular antigen/antibody interactions. These novel findings assist in unraveling specific mechanisms underlying clinical aggressiveness in poor-prognostic stereotyped subsets, with far-reaching implications for understanding their clonal evolution and implementing biologically oriented therapy.

Collaboration


Dive into the Jonathan C. Strefford's collaboration.

Top Co-Authors

Avatar

David Oscier

Royal Bournemouth Hospital

View shared research outputs
Top Co-Authors

Avatar

Helen Parker

University of Southampton

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew Steele

University of Southampton

View shared research outputs
Top Co-Authors

Avatar

Zadie Davis

Royal Bournemouth Hospital

View shared research outputs
Top Co-Authors

Avatar

Anton Parker

Royal Bournemouth Hospital

View shared research outputs
Top Co-Authors

Avatar

Anne Gardiner

Royal Bournemouth Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark S. Cragg

University of Southampton

View shared research outputs
Top Co-Authors

Avatar

Andrew Collins

University of Southampton

View shared research outputs
Researchain Logo
Decentralizing Knowledge