Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan C. Zhao is active.

Publication


Featured researches published by Jonathan C. Zhao.


Oncogene | 2016

LncRNA HOTAIR enhances ER signaling and confers tamoxifen resistance in breast cancer

Xingyang Xue; Yeqing Angela Yang; Ali Zhang; Ka-Wing Fong; Jung Kim; Bing Song; Shangze Li; Jonathan C. Zhao; Jindan Yu

Tamoxifen, an estrogen receptor (ER) antagonist, is the mainstay treatment of breast cancer and the development of resistance represents a major obstacle for a cure. Although long non-coding RNAs such as HOTAIR have been implicated in breast tumorigenesis, their roles in chemotherapy resistance remain largely unknown. In this study, we report that HOTAIR (HOX antisense intergenic RNA) is upregulated in tamoxifen-resistant breast cancer tissues compared to their primary counterparts. Mechanistically, HOTAIR is a direct target of ER-mediated transcriptional repression and is thus restored upon the blockade of ER signaling, either by hormone deprivation or by tamoxifen treatment. Interestingly, this elevated HOTAIR increases ER protein level and thus enhances ER occupancy on the chromatin and potentiates its downstream gene regulation. HOTAIR overexpression is sufficient to activate the ER transcriptional program even under hormone-deprived conditions. Functionally, we found that HOTAIR overexpression increases breast cancer cell proliferation, whereas its depletion significantly impairs cell survival and abolishes tamoxifen-resistant cell growth. In conclusion, the long non-coding RNA HOTAIR is directly repressed by ER and its upregulation promotes ligand-independent ER activities and contributes to tamoxifen resistance.


Genome Research | 2012

Cooperation between Polycomb and androgen receptor during oncogenic transformation

Jonathan C. Zhao; Jianjun Yu; Christine Runkle; Longtao Wu; Ming Hu; Dayong Wu; Jun S. Liu; Qianben Wang; Zhaohui S. Qin; Jindan Yu

Androgen receptor (AR) is a hormone-activated transcription factor that plays important roles in prostate development and function, as well as malignant transformation. The downstream pathways of AR, however, are incompletely understood. AR has been primarily known as a transcriptional activator inducing prostate-specific gene expression. Through integrative analysis of genome-wide AR occupancy and androgen-regulated gene expression, here we report AR as a globally acting transcriptional repressor. This repression is mediated by androgen-responsive elements (ARE) and dictated by Polycomb group protein EZH2 and repressive chromatin remodeling. In embryonic stem cells, AR-repressed genes are occupied by EZH2 and harbor bivalent H3K4me3 and H3K27me3 modifications that are characteristic of differentiation regulators, the silencing of which maintains the undifferentiated state. Concordantly, these genes are silenced in castration-resistant prostate cancer rendering a stem cell-like lack of differentiation and tumor progression. Collectively, our data reveal an unexpected role of AR as a transcriptional repressor inhibiting non-prostatic differentiation and, upon excessive signaling, resulting in cancerous dedifferentiation.


Cell Reports | 2015

LncRNA HOTAIR Enhances the Androgen-Receptor-Mediated Transcriptional Program and Drives Castration-Resistant Prostate Cancer

Ali Zhang; Jonathan C. Zhao; Jung Kim; Ka-Wing Fong; Yeqing Angela Yang; Debabrata Chakravarti; Yin Yuan Mo; Jindan Yu

SUMMARY Understanding the mechanisms of androgen receptor (AR) activation in the milieu of low androgen is critical to effective treatment of castration-resistant prostate cancer (CRPC). Here, we report HOTAIR as an androgen-repressed lncRNA, and, as such, it is markedly upregulated following androgen deprivation therapies and in CRPC. We further demonstrate a distinct mode of lncRNA-mediated gene regulation, wherein HOTAIR binds to the AR protein to block its interaction with the E3 ubiquitin ligase MDM2, thereby preventing AR ubiquitination and protein degradation. Consequently, HOTAIR expression is sufficient to induce androgen-independent AR activation and drive the AR-mediated transcriptional program in the absence of androgen. Functionally, HOTAIR overexpression increases, whereas HOTAIR knockdown decreases, prostate cancer cell growth and invasion. Taken together, our results provide compelling evidence of lncRNAs as drivers of androgen-independent AR activity and CRPC progression, and they support the potential of lncRNAs as therapeutic targets.


Cancer Research | 2013

Androgen Receptor-Independent Function of FoxA1 in Prostate Cancer Metastasis

Hong Jian Jin; Jonathan C. Zhao; Irene M. Ogden; Raymond C. Bergan; Jindan Yu

FoxA1 (FOXA1) is a pioneering transcription factor of the androgen receptor (AR) that is indispensible for the lineage-specific gene expression of the prostate. To date, there have been conflicting reports on the role of FoxA1 in prostate cancer progression and prognosis. With recent discoveries of recurrent FoxA1 mutations in human prostate tumors, comprehensive understanding of FoxA1 function has become very important. Here, through genomic analysis, we reveal that FoxA1 regulates two distinct oncogenic processes via disparate mechanisms. FoxA1 induces cell growth requiring the AR pathway. On the other hand, FoxA1 inhibits cell motility and epithelial-to-mesenchymal transition (EMT) through AR-independent mechanism directly opposing the action of AR signaling. Using orthotopic mouse models, we further show that FoxA1 inhibits prostate tumor metastasis in vivo. Concordant with these contradictory effects on tumor progression, FoxA1 expression is slightly upregulated in localized prostate cancer wherein cell proliferation is the main feature, but is remarkably downregulated when the disease progresses to metastatic stage for which cell motility and EMT are essential. Importantly, recently identified FoxA1 mutants have drastically attenuated ability in suppressing cell motility. Taken together, our findings illustrate an AR-independent function of FoxA1 as a metastasis inhibitor and provide a mechanism by which recurrent FoxA1 mutations contribute to prostate cancer progression.


Nature Communications | 2014

Cooperativity and equilibrium with FOXA1 define the androgen receptor transcriptional program

Hong Jian Jin; Jonathan C. Zhao; Longtao Wu; Jung Kim; Jindan Yu

The pioneering factor FOXA1 opens chromatin to facilitate androgen receptor (AR) binding to prostate-specific genes. How FOXA1 controls the AR cistrome, however, is incompletely understood. Here we show that AR directly binds chromatin through the androgen-response elements (AREs). FOXA1 is not required for AR-chromatin interaction, but instrumental in recruiting AR to low-affinity half-AREs by opening local chromatin around adjacent FKHD sites. Too much FOXA1 creates excessive open chromatin regions, which serve as reservoirs that retain AR via abundant half-AREs, thereby reducing its availability for specific sites. FOXA1 down-regulation, by contrast, relinquishes AR to permissively bind AREs across the genome, resulting in substantial AR binding events and AR-target gene expression even in the absence of androgen. Taken together, our data illustrate the mechanistic details by which cooperativity and equilibrium with FOXA1 define AR cistrome and reveal a previously unknown function of FOXA1 in inhibiting AR signaling and castration-resistant prostate cancer growth.


The EMBO Journal | 2013

BRCA1 is a negative modulator of the PRC2 complex

Lan Wang; Xianzhuo Zeng; Shuai Chen; Liya Ding; Jian Zhong; Jonathan C. Zhao; Liguo Wang; Aaron L. Sarver; Antonius Koller; Jizu Zhi; Yupo Ma; Jindan Yu; Junjie Chen; Haojie Huang

The Polycomb‐repressive complex 2 (PRC2) is important for maintenance of stem cell pluripotency and suppression of cell differentiation by promoting histone H3 lysine 27 trimethylation (H3K27me3) and transcriptional repression of differentiation genes. Here we show that the tumour‐suppressor protein BRCA1 interacts with the Polycomb protein EZH2 in mouse embryonic stem (ES) and human breast cancer cells. The BRCA1‐binding region in EZH2 overlaps with the noncoding RNA (ncRNA)‐binding domain, and BRCA1 expression inhibits the binding of EZH2 to the HOTAIR ncRNA. Decreased expression of BRCA1 causes genome‐wide EZH2 re‐targeting and elevates H3K27me3 levels at PRC2 target loci in both mouse ES and human breast cancer cells. BRCA1 deficiency blocks ES cell differentiation and enhances breast cancer migration and invasion in an EZH2‐dependent manner. These results reveal that BRCA1 is a key negative modulator of PRC2 and that loss of BRCA1 inhibits ES cell differentiation and enhances an aggressive breast cancer phenotype by affecting PRC2 function.


Cell Research | 2015

A miR-130a-YAP positive feedback loop promotes organ size and tumorigenesis

Shuying Shen; Xiaocan Guo; Huan Yan; Yi Lu; Xinyan Ji; Li Li; Tingbo Liang; Dawang Zhou; Xin-Hua Feng; Jonathan C. Zhao; Jindan Yu; Xing Guo Gong; Lei Zhang; Bin Zhao

Organ size determination is one of the most intriguing unsolved mysteries in biology. Aberrant activation of the major effector and transcription co-activator YAP in the Hippo pathway causes drastic organ enlargement in development and underlies tumorigenesis in many human cancers. However, how robust YAP activation is achieved during organ size control remains elusive. Here we report that the YAP signaling is sustained through a novel microRNA-dependent positive feedback loop. miR-130a, which is directly induced by YAP, could effectively repress VGLL4, an inhibitor of YAP activity, thereby amplifying the YAP signals. Inhibition of miR-130a reversed liver size enlargement induced by Hippo pathway inactivation and blocked YAP-induced tumorigenesis. Furthermore, the Drosophila Hippo pathway target bantam functionally mimics miR-130a by repressing the VGLL4 homolog SdBP/Tgi. These findings reveal an evolutionarily conserved positive feedback mechanism underlying robustness of the Hippo pathway in size control and tumorigenesis.


Cancer Research | 2013

ERG Is a Critical Regulator of Wnt/LEF1 Signaling in Prostate Cancer

Longtao Wu; Jonathan C. Zhao; Jung Kim; Hong Jian Jin; Cun-Yu Wang; Jindan Yu

Chromosomal translocations juxtaposing the androgen-responsive TMPRSS2 promoter with the ETS-family transcription factor ERG result in aberrant ERG upregulation in approximately 50% of prostate cancers. Studies to date have shown important roles of ERG in inducing oncogenic properties of prostate cancer. Its molecular mechanisms of action, however, are yet to be fully understood. Here, we report that ERG activates Wnt/LEF1 signaling cascade through multiple mechanisms. ERG bound to the promoters of various Wnt genes to directly increase ligand expression. Consequently, ERG overexpression increased active β-catenin level in the cells and enhanced TCF/LEF1 luciferase reporter activity, which could be partially blocked by WNT-3A inhibitor IWP-2. Most importantly, our data defined LEF1 as a direct target of ERG and that LEF1 inhibition fully abolished ERG-induced Wnt signaling and target gene expression. Furthermore, functional assays showed that Wnt/LEF1 activation phenocopied that of ERG in inducing cell growth, epithelial-to-mesenchymal transition, and cell invasion, whereas blockade of Wnt signaling attenuated these effects. Concordantly, LEF1 expression is significantly upregulated in ERG-high human prostate cancers. Overall, this study provides an important mechanism of activation of Wnt signaling in prostate cancer and nominates LEF1 as a critical mediator of ERG-induced tumorigenesis. Wnt/LEF1 pathway might provide novel targets for therapeutic management of patients with fusion-positive prostate cancer.


Oncogene | 2014

TMPRSS2–ERG gene fusions induce prostate tumorigenesis by modulating microRNA miR-200c

Jung Kim; Longtao Wu; Jonathan C. Zhao; Hong-Jian Jin; Jindan Yu

Chromosomal translocations that juxtapose the androgen-sensitive transmembrane protease, serine 2 (TMPRSS2) gene promoter to the oncogenic ETS-family transcription factor ERG result in excessive ERG overexpression in approximately 50% of prostate cancer (PCa) patients. Although numerous studies have investigated ERG-downstream genes, such studies have not attempted to examine miRNAs, which however are emerging to be important regulators of cancer. Through bioinformatics analysis of ChIP-Seq ERG data and miRNA expression profiling data we nominated miR-200c as a direct target of ERG. Experimentation of PCa cells with ERG overexpression or knockdown demonstrated that ERG directly repressed miR-200c expression by physically binding to the erythroblast transformation-specific (ETS) motif within its promoter. Consequently, miR-200c was downregulated in ERG-positive PCa, and miR-200c target gene expression was restored. In addition, the expression pattern of miR-200c target genes predicted ERG status in clinical PCa specimens. Furthermore, miR-200c was found to be important in modulating ZEB1 upregulation by ERG. Most importantly, miR-200c reconstitution fully reversed ERG-induced epithelial-to-mesenchymal transition (EMT), cell migration and invasion. Therefore, our study report miR-200c as the first miRNA target of ERG and a critical inhibitor of PCa cell motility. Therapeutic delivery of miR-200c may provide personalized treatment for patients with the molecular subtype of PCa that harbors TMPRSS2–ERG gene fusions.


Oncogene | 2016

FOXA1 acts upstream of GATA2 and AR in hormonal regulation of gene expression

Jonathan C. Zhao; Ka-Wing Fong; Hong-Jian Jin; Yeqing A. Yang; Jung Kim; Jindan Yu

Hormonal regulation of gene expression by androgen receptor (AR) is tightly controlled by many transcriptional cofactors, including pioneer factors FOXA1 and GATA2, which, however, exhibit distinct expression patterns and functional roles in prostate cancer. Here, we examined how FOXA1, GATA2 and AR crosstalk and regulate hormone-dependent gene expression in prostate cancer cells. Chromatin immunoprecipitation sequencing analysis revealed that FOXA1 reprograms both AR and GATA2 cistrome by preferably recruiting them to FKHD-containing genomic sites. By contrast, GATA2 is unable to shift AR or FOXA1 to GATA motifs. Rather, GATA2 co-occupancy enhances AR and FOXA1 binding to nearby ARE and FKHD sites, respectively. Similarly, AR increases, but not reprograms, GATA2 and FOXA1 cistromes. Concordantly, GATA2 and AR strongly enhance the transcriptional program of each other, whereas FOXA1 regulates GATA2- and AR-mediated gene expression in a context-dependent manner due to its reprogramming effects. Taken together, our data delineated for the first time the distinct mechanisms by which GATA2 and FOXA1 regulate AR cistrome and suggest that FOXA1 acts upstream of GATA2 and AR in determining hormone-dependent gene expression in prostate cancer.

Collaboration


Dive into the Jonathan C. Zhao's collaboration.

Top Co-Authors

Avatar

Jindan Yu

Northwestern University

View shared research outputs
Top Co-Authors

Avatar

Jung Kim

Northwestern University

View shared research outputs
Top Co-Authors

Avatar

Ka-Wing Fong

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Longtao Wu

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shangze Li

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge