Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan D. Ashwell is active.

Publication


Featured researches published by Jonathan D. Ashwell.


Nature Cell Biology | 2006

Sensing of Lys 63-linked polyubiquitination by NEMO is a key event in NF-κB activation

Chuan-Jin Wu; Dietrich B. Conze; Tao Li; Srinivasa M. Srinivasula; Jonathan D. Ashwell

The transcription factor NF-κB is sequestered in the cytoplasm in a complex with IκB. Almost all NF-κB activation pathways converge on IκB kinase (IKK), which phosphorylates IκB resulting in Lys 48-linked polyubiquitination of IκB and its degradation. This allows migration of NF-κB to the nucleus where it regulates gene expression. IKK has two catalytic subunits, IKKα and IKKβ, and a regulatory subunit, IKKγ or NEMO. NEMO is essential for NF-κB activation, and NEMO dysfunction in humans is the cause of incontinentia pigmenti and hypohidrotic ectodermal dysplasia and immunodeficiency (HED–ID). The recruitment of IKK to occupied cytokine receptors, and its subsequent activation, are dependent on the attachment of Lys 63-linked polyubiquitin chains to signalling intermediates such as receptor-interacting protein (RIP). Here, we show that NEMO binds to Lys 63- but not Lys 48-linked polyubiquitin, and that single point mutations in NEMO that prevent binding to Lys 63-linked polyubiquitin also abrogates the binding of NEMO to RIP in tumour necrosis factor (TNF)-α-stimulated cells, the recruitment of IKK to TNF receptor (TNF-R) 1, and the activation of IKK and NF-κB. RIP is also destabilized in the absence of NEMO binding and undergoes proteasomal degradation in TNF-α-treated cells. These results provide a mechanism for NEMOs critical role in IKK activation, and a key to understanding the link between cytokine-receptor proximal signalling and IKK and NF-κB activation.


Nature Genetics | 1999

Genomic instability in Gadd45a- deficient mice

M C Hollander; M. S. Sheikh; Dmitry V. Bulavin; K. Lundgren; L. Augeri-Henmueller; R. Shehee; T. A. Molinaro; Kyungjae Kim; E. Tolosa; Jonathan D. Ashwell; M. P. Rosenberg; Qimin Zhan; Pedro Fernandez-Salguero; W. F. Morgan; Chu-Xia Deng; Albert J. Fornace

Gadd45a-null mice generated by gene targeting exhibited several of the phenotypes characteristic of p53-deficient mice, including genomic instability, increased radiation carcinogenesis and a low frequency of exencephaly. Genomic instability was exemplified by aneuploidy, chromosome aberrations, gene amplification and centrosome amplification, and was accompanied by abnormalities in mitosis, cytokinesis and growth control. Unequal segregation of chromosomes due to multiple spindle poles during mitosis occurred in several Gadd45a –/– cell lineages and may contribute to the aneuploidy. Our results indicate that Gadd45a is one component of the p53 pathway that contributes to the maintenance of genomic stability.


Nature | 2002

TNF-RII and c-IAP1 mediate ubiquitination and degradation of TRAF2

Xiaoming Li; Yili Yang; Jonathan D. Ashwell

Tumour necrosis factor-α (TNF-α) is a proinflammatory mediator that exerts its biological functions by binding two TNF receptors (TNF-RI and TNF-RII), which initiate biological responses by interacting with adaptor and signalling proteins. Among the signalling components that associate with TNF receptors are members of the TNF-R-associated factor (TRAF) family. TRAF2 is required for TNF-α-mediated activation of c-Jun N-terminal kinase (JNK), contributes to activation of NF-κB, and mediates anti-apoptotic signals, . TNF-RI and TNF-RII signalling complexes also contain the anti-apoptotic (‘inhibitor of apoptosis’) molecules c-IAP1 and c-IAP2 (refs 5, 6), which also have RING domain-dependent ubiquitin protein ligase (E3) activity. The function of IAPs in TNF-R signalling is unknown. Here we show that binding of TNF-α to TNF-RII induces ubiquitination and proteasomal degradation of TRAF2. Although c-IAP1 bound TRAF2 and TRAF1 in vitro, it ubiquitinated only TRAF2. Expression of wild-type c-IAP1, but not an E3-defective mutant, resulted in TRAF2 ubiquitination and degradation. Moreover, E3-defective c-IAP1 prevented TNF-α-induced TRAF2 degradation and inhibited apoptosis. These findings identify a physiologic role for c-IAP1 and define a mechanism by which TNF-RII-regulated ubiquitin protein ligase activity can potentiate TNF-induced apoptosis.


Molecular Cell | 2008

IAPs : What's in a Name?

Srinivasa M. Srinivasula; Jonathan D. Ashwell

Originally described in insect viruses, cellular proteins with Baculoviral IAP repeat (BIR) motifs have been thought to function primarily as inhibitors of apoptosis. The subsequent finding that a subset of IAPs that contain a RING domain have ubiquitin protein ligase (E3) activity implied the presence of other functions. It is now known that IAPs are involved in mitotic chromosome segregation, cellular morphogenesis, copper homeostasis, and intracellular signaling. Here, we review the current understanding of the roles of IAPs in apoptotic and nonapoptotic processes and explore the notion that the latter represents the primary physiologic activities of IAPs.


Nature Reviews Immunology | 2006

The many paths to p38 mitogen-activated protein kinase activation in the immune system

Jonathan D. Ashwell

Signals emanating from many cell-surface receptors and environmental cues converge on mitogen-activated protein kinases (MAPKs), which in turn phosphorylate and activate various transcription factors and other molecular effectors. Members of the p38 MAPK family, which respond to pro-inflammatory cytokines and cellular stresses, are typically activated by serial phosphorylation and activation of upstream kinases (the MAPK cascade). In this Review, I highlight the recent studies that indicate that p38-subfamily members can also be activated by non-canonical mechanisms, at least one of which seems to have an important role in antigen-receptor-activated T cells. These alternative pathways might have particular relevance for cells that participate in immune and inflammatory responses.


Cell | 1988

Failure to synthesize the T cell CD3-ζ chain: structure and function of a partial T cell receptor complex.

Jeffrey J. Sussman; Juan S. Bonifacino; Jennifer Lippincott-Schwartz; Allan M. Weissman; Takashi Saito; Richard D. Klausner; Jonathan D. Ashwell

The T cell antigen receptor is composed of two variable chains (alpha and beta, termed Ti), which confer ligand specificity, and five constant chains (gamma, delta, epsilon, zeta, and p21, collectively termed CD3) whose functions are poorly understood. To explore the roles of the individual CD3 components, an antigen-specific murine T cell hybridoma was chemically mutagenized and antigen-induced growth inhibition was used to select CD3/Ti expression variants. One variant produced all CD3/Ti components except CD3-zeta and was able to express small amounts of surface CD3/Ti. This variant failed to respond normally to either antigen or a mitogenic anti-Thy-1 antibody. Surprisingly, in the absence of CD3-zeta, direct cross-linking of the partial receptor induced both phosphatidylinositol hydrolysis and interleukin 2 production. These data indicate that CD3-zeta determines the normal intracellular fate of the T cell antigen receptor and is likely to play an important role in physiologically relevant transmembrane signaling.


Molecular and Cellular Biology | 1997

Lack of a role for Jun kinase and AP-1 in Fas-induced apoptosis.

Joi M. Lenczowski; Lourdes Dominguez; Astrid M. Eder; Leslie B. King; Charles M. Zacharchuk; Jonathan D. Ashwell

Cross-linking of Fas (CD95) induces apoptosis, a response that has been reported to depend upon the Ras activation pathway. Since many examples of apoptosis have been reported to involve AP-1 and/or the AP-1-activation pathway. Since many examples of apoptosis have been reported to involve AP-1 and/or the AP-1-activating enzyme Jun kinase (JNK), downstream effectors of Ras or Ras-like small GTP-binding proteins, we evaluated the role of these molecules in Fas-mediated apoptosis. Although cross-linking of Fas on Jurkat T cells did result in JNK activation, increased activity was observed relatively late, being detectable only after 60 min of stimulation. Expression of a dominant negative form of SEK1 that blocked Fas-mediated induction of JNK activity had no effect on Fas-mediated apoptosis. Furthermore, maximally effective concentrations of anti-Fas did not cause JNK activation if apoptosis was blocked by a cysteine protease inhibitor, suggesting that under these conditions, activation of JNK may be secondary to the stress of apoptosis rather than a direct result of Fas engagement. Despite the activation of JNK, there was no induction of AP-1 activity as determined by gel shift assay or induction of an AP-1-responsive reporter. The lack of a requirement for AP-1 induction in Fas-mediated death was further substantiated with Jurkat cells that were stably transfected with a dominant negative cJun, TAM-67. While TAM-67 effectively prevented AP-1-dependent transcription of both the interleukin-2 and cJun genes, it had no effect on Fas-induced cell death, even at limiting levels of Fas signaling. Thus, induction of JNK activity in Jurkat cells by ligation of Fas at levels sufficient to cause cell death is likely a result, rather than a cause, of the apoptotic response, and AP-1 function is not required for Fas-induced apoptosis.


Nature Immunology | 2005

Alternative p38 activation pathway mediated by T cell receptor–proximal tyrosine kinases

Jesús M. Salvador; Tad Guszczynski; Terry D. Copeland; Hiroshi Yamaguchi; Ettore Appella; Albert J. Fornace; Jonathan D. Ashwell

Signaling-responsive MAP kinases (MAPKs) are key in mediating immune responses and are activated through the phosphorylation of a Thr-X-Tyr motif by upstream MAPK kinases. Here we show that T cells stimulated through the T cell receptor (TCR) used an alternative mechanism in which p38 was phosphorylated on Tyr323 and subsequently autophosphorylated residues Thr180 and Tyr182. This required the TCR-proximal tyrosine kinase Zap70 but not the adaptor protein LAT, which was required for activation of extracellular signal–regulated protein kinase MAPKs. TCR activation of p38 lacking Tyr323 was diminished, and blocking of p38 activity prevented p38 dual phosphorylation in normal T cells but not in B cells. Thus, phosphorylation of Tyr323 dependent on the tyrosine kinase Lck and mediated by Zap70 serves as an important mechanism for TCR activation of p38 in T cells.


Current Biology | 2007

Optineurin negatively regulates TNFα-induced NF-κB activation by competing with NEMO for ubiquitinated RIP

Guozhi Zhu; Chuan-Jin Wu; Yongge Zhao; Jonathan D. Ashwell

NF-kappaB essential modulator (NEMO), the regulatory subunit of the IkappaB kinase (IKK) that activates NF-kappaB, is essential for NF-kappaB activation. NEMO was recently found to contain a region that preferentially binds Lys (K)63-linked but not K48-linked polyubiquitin (polyUb) chains, and the ability of NEMO to bind to K63-linked polyUb RIP (receptor-interacting protein) is necessary for efficient tumor necrosis factor alpha (TNFalpha)-induced NF-kappaB activation. Optineurin is a homolog of NEMO, and mutations in the optineurin gene are found in a subset of patients with glaucoma, a neurodegenerative disease involving the loss of retinal ganglion cells. Although optineurin shares considerable homology with NEMO, in resting cells, it is not present in the high-molecular-weight complex containing IKKalpha and IKKbeta, and optineurin cannot substitute for NEMO in lipopolysaccharide (LPS)-induced NF-kappaB activation. On the other hand, the overexpression of optineurin blocks the protective effect of E3-14.7K on cell death caused by the overexpression of TNFalpha receptor 1 (TNFR1). Here we show that optineurin has a K63-linked polyUb-binding region similar to that of NEMO, and like NEMO, it bound K63- but not K48-linked polyUb. Optineurin competitively antagonized NEMOs binding to polyUb RIP, and its overexpression inhibited TNFalpha-induced NF-kappaB activation. This competition occurs at physiologic protein levels because microRNA silencing of optineurin resulted in markedly enhanced TNFalpha-induced NF-kappaB activity. These results reveal a physiologic role for optineurin in dampening TNFalpha signaling, and this role might provide an explanation for its association with glaucoma.


Molecular Cell | 2009

Structural Basis for Recognition of Diubiquitins by NEMO

Yu Chih Lo; Su Chang Lin; Carla C. Rospigliosi; Dietrich B. Conze; Chuan Jin Wu; Jonathan D. Ashwell; David Eliezer; Hao Wu

NEMO is the regulatory subunit of the IkappaB kinase (IKK) in NF-kappaB activation, and its CC2-LZ region interacts with Lys63 (K63)-linked polyubiquitin to recruit IKK to receptor signaling complexes. In vitro, CC2-LZ also interacts with tandem diubiquitin. Here we report the crystal structure of CC2-LZ with two dimeric coiled coils representing CC2 and LZ, respectively. Surprisingly, mutagenesis and nuclear magnetic resonance experiments reveal that the binding sites for diubiquitins at LZ are composites of both chains and that each ubiquitin in diubiquitins interacts with symmetrical NEMO asymmetrically. For tandem diubiquitin, the first ubiquitin uses the conserved hydrophobic patch and the C-terminal tail, while the second ubiquitin uses an adjacent surface patch. For K63-linked diubiquitin, the proximal ubiquitin uses its conserved hydrophobic patch, while the distal ubiquitin mostly employs the C-terminal arm including the K63 linkage residue. These studies uncover the energetics and geometry for mutual recognition of NEMO and diubiquitins.

Collaboration


Dive into the Jonathan D. Ashwell's collaboration.

Top Co-Authors

Avatar

Melanie S. Vacchio

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Ivana Munitic

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Yili Yang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Leslie B. King

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Allan M. Weissman

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dietrich B. Conze

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Richard D. Klausner

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Ettore Appella

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge