Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan D. Denlinger is active.

Publication


Featured researches published by Jonathan D. Denlinger.


Science | 2015

Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus

Jimin Kim; Seung Su Baik; Sae Hee Ryu; Yeongsup Sohn; Soohyung Park; Byeong Gyu Park; Jonathan D. Denlinger; Yeonjin Yi; Hyoung Joon Choi; Keun Su Kim

Tuning the band gap of black phosphorus Most materials used in electronics are semiconductors. The sizable energy gap in their electronic structure makes it easy to turn the conduction of electricity on and off. Graphene naturally lacks this band gap unless it undergoes certain modifications. Kim et al. studied the electronic structure of black phosphorus—a related two-dimensional material. By sprinkling potassium atoms on top of single layers of black phosphorus, the material changed from being a semiconductor to having a gapless linear dispersion similar to that of graphene. Science, this issue p. 723 Surface doping with potassium is used to tune black phosphorus from a semiconducting to a graphene-like electronic structure. Black phosphorus consists of stacked layers of phosphorene, a two-dimensional semiconductor with promising device characteristics. We report the realization of a widely tunable band gap in few-layer black phosphorus doped with potassium using an in situ surface doping technique. Through band structure measurements and calculations, we demonstrate that a vertical electric field from dopants modulates the band gap, owing to the giant Stark effect, and tunes the material from a moderate-gap semiconductor to a band-inverted semimetal. At the critical field of this band inversion, the material becomes a Dirac semimetal with anisotropic dispersion, linear in armchair and quadratic in zigzag directions. The tunable band structure of black phosphorus may allow great flexibility in design and optimization of electronic and optoelectronic devices.


Journal of Physics D | 2006

Structure and electronic properties of InN and In-rich group III-nitride alloys

W. Walukiewicz; Joel W. Ager; K. M. Yu; Z. Liliental-Weber; J. Wu; S. X. Li; Reese E. Jones; Jonathan D. Denlinger

The experimental study of InN and In-rich InGaN by a number of structural, optical and electrical methods is reviewed. Recent advances in thin film growth have produced single crystal epitaxial layers of InN which are similar in structural quality to GaN films made under similar conditions and which can have electron concentrations below 1 × 1018 cm−3 and mobilities exceeding 2000 cm2 (Vs)−1. Optical absorption, photoluminescence, photo-modulated reflectance and soft x-ray spectroscopy measurements were used to establish that the room temperature band gap of InN is 0.67 ± 0.05 eV. Experimental measurements of the electron effective mass in InN are presented and interpreted in terms of a non-parabolic conduction band caused by the k · p interaction across the narrow gap. Energetic particle irradiation is shown to be an effective method to control the electron concentration, n, in undoped InN. Optical studies of irradiated InN reveal a large Burstein–Moss shift of the absorption edge with increasing n. Fundamental studies of the energy levels of defects in InN and of electron transport are also reviewed. Finally, the current experimental evidence for p-type activity in Mg-doped InN is evaluated.


Nature Communications | 2012

Observation of a topological crystalline insulator phase and topological phase transition in Pb 1− x Sn x Te

Su-Yang Xu; Chang Liu; Nasser Alidoust; Madhab Neupane; D. Qian; Ilya Belopolski; Jonathan D. Denlinger; Yu-Tsai Wang; Hsin Lin; L. Wray; Gabriel Landolt; Bartosz Slomski; J. H. Dil; A. Marcinkova; E. Morosan; Q. Gibson; Raman Sankar; Fangcheng Chou; R. J. Cava; A. Bansil; M. Z. Hasan

A topological insulator protected by time-reversal symmetry is realized via spinorbit interaction driven band inversion. The topological phase in the Bi1−xSbx system is due to an odd number of band inversions. A related spin-orbit system, the Pb1−xSnxTe, has long been known to contain an even number of inversions based on band theory. Here we experimentally investigate the possibility of a mirror symmetry protected topological crystalline insulator phase in the Pb1−xSnxTe class of materials which has been theoretically predicted to exist in its end compound SnTe. Our experimental results show that at a finite-Pb composition above the topological inversion phase transition, the surface exhibits even number of spin-polarized Dirac cone states revealing mirror-protected topological order distinct from that observed in Bi1−xSbx. Our observation of the spin-polarized Dirac surface states in the inverted Pb1−xSnxTe and their absence in the non-inverted compounds related via a topological phase transition provide the experimental groundwork for opening the research on novel topological order in quantum devices.A topological insulator protected by time-reversal symmetry is realized via spin-orbit interaction-driven band inversion. The topological phase in the Bi(1-x)Sb(x) system is due to an odd number of band inversions. A related spin-orbit system, the Pb(1-x)Sn(x)Te, has long been known to contain an even number of inversions based on band theory. Here we experimentally investigate the possibility of a mirror symmetry-protected topological crystalline insulator phase in the Pb(1-x)Sn(x)Te class of materials that has been theoretically predicted to exist in its end compound SnTe. Our experimental results show that at a finite Pb composition above the topological inversion phase transition, the surface exhibits even number of spin-polarized Dirac cone states revealing mirror-protected topological order distinct from that observed in Bi(1-x)Sb(x). Our observation of the spin-polarized Dirac surface states in the inverted Pb(1-x)Sn(x)Te and their absence in the non-inverted compounds related via a topological phase transition provide the experimental groundwork for opening the research on novel topological order in quantum devices.


Nature Physics | 2016

Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2

Ke Deng; Guoliang Wan; Peng Deng; Kenan Zhang; Shijie Ding; Eryin Wang; Mingzhe Yan; Huaqing Huang; Hongyun Zhang; Z. Xu; Jonathan D. Denlinger; A. V. Fedorov; Haitao Yang; Wenhui Duan; Hong Yao; Yang Wu; y Shoushan Fan; Haijun Zhang; Xi Chen; Shuyun Zhou

Observations of topological surface states provide strong evidence that MoTe2 is a type-II Weyl semimetal, hosting Weyl fermions that have no counterpart in high-energy physics.


Radiation Research | 2004

Soft X-ray-induced decomposition of amino acids: an XPS, mass spectrometry, and NEXAFS study.

Yan Zubavichus; O. Fuchs; L. Weinhardt; C. Heske; E. Umbach; Jonathan D. Denlinger; Michael Grunze

Abstract Zubavichus, Y., Fuchs, O., Weinhardt, L., Heske, C., Umbach, E., Denlinger, J. D. and Grunze, M. Soft X-Ray-Induced Decomposition of Amino Acids: An XPS, Mass Spectrometry, and NEXAFS Study. Radiat. Res. 161, 346–358 (2004). Decomposition of five amino acids, alanine, serine, cysteine, aspartic acid, and asparagine, under irradiation with soft X rays (magnesium KαX-ray source) in ultra-high vacuum was studied by means of X-ray photoelectron spectrometry (XPS) and mass spectrometry. A comparative analysis of changes in XPS line shapes, stoichiometry and residual gas composition indicates that the molecules decompose by several pathways. Dehydration, decarboxylation, decarbonylation, deamination and desulfurization of pristine molecules accompanied by desorption of H2, H2O, CO2, CO, NH3and H2S are observed with rates depending on the specific amino acid. NEXAFS spectra of cysteine at the carbon, oxygen and nitrogen K-shell and sulfur L2,3edges complement the XPS and mass spectrometry data and show that the exposure of the sample to an intense soft X-ray synchrotron beam results in the formation of C-C and C-N double and triple bonds. Qualitatively, the amino acids studied can be arranged in the following ascending order of radiation stability: serine < alanine < aspartic acid < cysteine < asparagine.


Science | 2014

Fermi arcs in a doped pseudospin-1/2 Heisenberg antiferromagnet

Y. K. Kim; O. Krupin; Jonathan D. Denlinger; E. Rotenberg; Qingbiao Zhao; J. F. Mitchell; J. W. Allen; Bum-Joon Kim

Identifying a cuprate look-alike Superconductivity in cuprate compounds remains poorly understood. Recreating its features in an unrelated material may provide insight. Kim et al. used a spectroscopic technique to study the electronic states of the material Sr2IrO4 at relatively high temperatures. They observed phenomenology similar to that of cuprates as they varied the surface carrier concentration. The study highlights the essential properties a material needs in order to exhibit cuprate-like features in the normal (nonsuperconducting) state. Science, this issue p. 187 Some of the phenomenology of cuprate superconductors is recreated in strontium iridate surface-doped with potassium. High-temperature superconductivity in cuprates arises from an electronic state that remains poorly understood. We report the observation of a related electronic state in a noncuprate material, strontium iridate (Sr2IrO4), in which the distinct cuprate fermiology is largely reproduced. Upon surface electron doping through in situ deposition of alkali-metal atoms, angle-resolved photoemission spectra of Sr2IrO4 display disconnected segments of zero-energy states, known as Fermi arcs, and a gap as large as 80 millielectron volts. Its evolution toward a normal metal phase with a closed Fermi surface as a function of doping and temperature parallels that in the cuprates. Our result suggests that Sr2IrO4 is a useful model system for comparison to the cuprates.


Nature Physics | 2013

Photoelectron spin-flipping and texture manipulation in a topological insulator

Chris Jozwiak; Cheol-Hwan Park; Kenneth Gotlieb; Choongyu Hwang; Dung-Hai Lee; Steven G. Louie; Jonathan D. Denlinger; C. R. Rotundu; R. J. Birgeneau; Z. Hussain; Alessandra Lanzara

In a topological insulator, the surface-state electron spins are ‘locked’ to their direction of travel. But when an electron is kicked out by a photon through the photoelectric effect, the spin polarization is not necessarily conserved. In fact, the ejected spins can be completely manipulated in three dimensions by the incident photons.


Physical Review Letters | 2003

Prominent quasiparticle peak in the photoemission spectrum of the metallic phase of V2O3.

Sung-Kwan Mo; Jonathan D. Denlinger; Heejung Kim; Jeongho Park; James W. Allen; Akira Sekiyama; A. Yamasaki; K. Kadono; S. Suga; Y. Saitoh; Takayuki Muro; P. Metcalf; G. Keller; K. Held; V. Eyert; V. I. Anisimov; D. Vollhardt

We present the first observation of a prominent quasiparticle peak in the photoemission spectrum of the metallic phase of V2O3 and report new spectral calculations that combine the local-density approximation with the dynamical mean-field theory (using quantum Monte Carlo simulations) to show the development of such a distinct peak with decreasing temperature. The experimental peak width and weight are significantly larger than in the theory.


Physical Review Letters | 2006

Orbitally Driven Spin-Singlet Dimerization in S=1 La4Ru2O10

Hua Wu; Z. Hu; T. Burnus; Jonathan D. Denlinger; Peter G. Khalifah; David Mandrus; L. Y. Jang; H. H. Hsieh; A. Tanaka; K. S. Liang; J. W. Allen; R. J. Cava; D. I. Khomskii; L. H. Tjeng

Using x-ray absorption spectroscopy at the Ru-L2,3 edge we reveal that the Ru4+ ions remain in the S=1 spin state across the rare 4d-orbital ordering transition and spin-gap formation. We find using local spin density approximation + Hubbard U band structure calculations that the crystal fields in the low-temperature phase are not strong enough to stabilize the S=0 state. Instead, we identify a distinct orbital ordering with a significant anisotropy of the antiferromagnetic exchange couplings. We conclude that La4Ru2O10 appears to be a novel material in which the orbital physics drives the formation of spin-singlet dimers in a quasi-two-dimensional S=1 system.


Physical Review B | 2009

Evidence for weak electronic correlations in iron pnictides

Wanli Yang; A. P. Sorini; Cheng-Chien Chen; Brian Moritz; W. S. Lee; F. Vernay; P. Olalde-Velasco; Jonathan D. Denlinger; Bernard Delley; Jiun-Haw Chu; James G. Analytis; I. R. Fisher; Zhi-An Ren; J. Yang; W. Lu; Z.X. Zhao; J. van den Brink; Z. Hussain; Zhi-Xun Shen; T. P. Devereaux

Using x-ray absorption and resonant inelastic x-ray scattering, charge dynamics at and near the Fe L edges is investigated in Fe pnictide materials, and contrasted to that measured in other Fe compounds. It is shown that the XAS and RIXS spectra for 122 and 1111 Fe pnictides are each qualitatively similar to Fe metal. Cluster diagonalization, multiplet, and density-functional calculations show that Coulomb correlations are much smaller than in the cuprates, highlighting the role of Fe metallicity and strong covalency in these materials. Best agreement with experiment is obtained using Hubbard parameters U <~;; 2eV and J ~;; 0.8eV.

Collaboration


Dive into the Jonathan D. Denlinger's collaboration.

Top Co-Authors

Avatar

Eli Rotenberg

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

C. Heske

University of Nevada

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

O. Fuchs

University of Würzburg

View shared research outputs
Top Co-Authors

Avatar

Wanli Yang

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

M. Blum

University of Nevada

View shared research outputs
Top Co-Authors

Avatar

E. Umbach

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Sung-Kwan Mo

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

W. Walukiewicz

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Alessandra Lanzara

Lawrence Berkeley National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge