Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan D. Gitlin is active.

Publication


Featured researches published by Jonathan D. Gitlin.


Molecular and Cellular Biology | 2010

Regulation of the Copper Chaperone CCS by XIAP-Mediated Ubiquitination

Graham F. Brady; Stefanie Galban; Xuwen Liu; Venkatesha Basrur; Jonathan D. Gitlin; Kojo S.J. Elenitoba-Johnson; Thomas E. Wilson; Colin S. Duckett

ABSTRACT In order to balance the cellular requirements for copper with its toxic properties, an elegant set of mechanisms has evolved to regulate and buffer intracellular copper. The X-linked inhibitor of apoptosis (XIAP) protein was recently identified as a copper-binding protein and regulator of copper homeostasis, although the mechanism by which XIAP binds copper in the cytosol is unclear. Here we describe the identification of the copper chaperone for superoxide dismutase (CCS) as a mediator of copper delivery to XIAP in cells. We also find that CCS is a target of the E3 ubiquitin ligase activity of XIAP, although interestingly, ubiquitination of CCS by XIAP was found to lead to enhancement of its chaperone activity toward its physiologic target, superoxide dismutase 1, rather than proteasomal degradation. Collectively, our results reveal novel links among apoptosis, copper metabolism, and redox regulation through the XIAP-CCS complex.


Disease Models & Mechanisms | 2010

Combined zebrafish-yeast chemical-genetic screens reveal gene–copper-nutrition interactions that modulate melanocyte pigmentation

Hironori Ishizaki; Michaela Spitzer; Jan Wildenhain; Corina Anastasaki; Zhiqiang Zeng; Sonam Dolma; Michael Shaw; Erik Madsen; Jonathan D. Gitlin; Richard Marais; Mike Tyers; E. Elizabeth Patton

SUMMARY Hypopigmentation is a feature of copper deficiency in humans, as caused by mutation of the copper (Cu2+) transporter ATP7A in Menkes disease, or an inability to absorb copper after gastric surgery. However, many causes of copper deficiency are unknown, and genetic polymorphisms might underlie sensitivity to suboptimal environmental copper conditions. Here, we combined phenotypic screens in zebrafish for compounds that affect copper metabolism with yeast chemical-genetic profiles to identify pathways that are sensitive to copper depletion. Yeast chemical-genetic interactions revealed that defects in intracellular trafficking pathways cause sensitivity to low-copper conditions; partial knockdown of the analogous Ap3s1 and Ap1s1 trafficking components in zebrafish sensitized developing melanocytes to hypopigmentation in low-copper environmental conditions. Because trafficking pathways are essential for copper loading into cuproproteins, our results suggest that hypomorphic alleles of trafficking components might underlie sensitivity to reduced-copper nutrient conditions. In addition, we used zebrafish-yeast screening to identify a novel target pathway in copper metabolism for the small-molecule MEK kinase inhibitor U0126. The zebrafish-yeast screening method combines the power of zebrafish as a disease model with facile genome-scale identification of chemical-genetic interactions in yeast to enable the discovery and dissection of complex multigenic interactions in disease-gene networks.


Developmental Dynamics | 2008

Essential role for the alpha 1 chain of type VIII collagen in Zebrafish notochord formation

John M. Gansner; Jonathan D. Gitlin

Several zebrafish mutants identified in large‐scale forward genetic screens exhibit notochord distortion. We now report the cloning and further characterization of one such mutant, gulliverm208 (gulm208). The notochord defect in gulm208 mutants is exacerbated under conditions of copper depletion or lysyl oxidase cuproenzyme inhibition that are without a notochord effect on wild‐type embryos. The gulm208 phenotype results from a missense mutation in the gene encoding Col8a1, a lysyl oxidase substrate, and morpholino knockdown of col8a1 recapitulates the notochord distortion observed in gulm208 mutants. Of interest, the amino acid mutated in gulm208 Col8a1 is highly conserved, and the equivalent substitution in a closely related human protein, COL10A1, causes Schmid metaphyseal chondrodysplasia. Taken together, the data identify a new protein essential for notochord morphogenesis, extend our understanding of gene–nutrient interactions in early development, and suggest that human mutations in COL8A1 may cause structural birth defects. Developmental Dynamics 237:3715–3726, 2008.


Developmental Dynamics | 2014

Kinesin Family Member 6 (kif6) Is Necessary for Spine Development in Zebrafish

Jillian G. Buchan; Ryan S. Gray; John M. Gansner; David M. Alvarado; Lydia Burgert; Jonathan D. Gitlin; Christina A. Gurnett; Matthew I. Goldsmith

Background: Idiopathic scoliosis is a form of spinal deformity that affects 2–3% of children and results in curvature of the spine without structural defects of the vertebral units. The pathogenesis of idiopathic scoliosis remains poorly understood, in part due to the lack of a relevant animal model. Results: We performed a forward mutagenesis screen in zebrafish to identify new models for idiopathic scoliosis. We isolated a recessive zebrafish mutant, called skolios, which develops isolated spinal curvature that arises independent of vertebral malformations. Using meiotic mapping and whole genome sequencing, we identified a nonsense mutation in kinesin family member 6 (kif6gw326) unique to skolios mutants. Three additional kif6 frameshift alleles (gw327, gw328, gw329) were generated with transcription activator‐like effector nucleases (TALENs). Zebrafish homozygous or compound heterozygous for kif6 frameshift mutations developed a scoliosis phenotype indistinguishable from skolios mutants, confirming that skolios is caused by the loss of kif6. Although kif6 may play a role in cilia, no evidence for cilia dysfunction was seen in kif6gw326 mutants. Conclusions: Overall, these findings demonstrate a novel role for kif6 in spinal development and identify a new candidate gene for human idiopathic scoliosis. Developmental Dynamics 243:1646–1657, 2014.


PLOS ONE | 2012

Conditional Knockout of the Menkes Disease Copper Transporter Demonstrates Its Critical Role in Embryogenesis

Yanfang Wang; Sha Zhu; Gary A. Weisman; Jonathan D. Gitlin; Michael J. Petris

The transition metal, copper (Cu), is an enzymatic cofactor required for a wide range of biochemical processes. Its essentiality is demonstrated by Menkes disease, an X-linked copper deficiency disorder characterized by defects in nervous-, cardiovascular- and skeletal systems, and is caused by mutations in the ATP7A copper transporter. Certain ATP7A mutations also cause X-linked Spinal Muscular Atrophy type 3 (SMAX3), which is characterized by neuromuscular defects absent an underlying systemic copper deficiency. While an understanding of these ATP7A-related disorders would clearly benefit from an animal model that permits tissue-specific deletion of the ATP7A gene, no such model currently exists. In this study, we generated a floxed mouse model allowing the conditional deletion of the Atp7a gene using Cre recombinase. Global deletion of Atp7a resulted in morphological and vascular defects in hemizygous male embryos and death in utero. Heterozygous deletion in females resulted in a 50% reduction in live births and a high postnatal lethality. These studies demonstrate the essential role of the Atp7a gene in mouse embryonic development and establish a powerful model for understanding the tissue-specific roles of ATP7A in copper metabolism and disease.


The Journal of Pathology | 2015

X-linked spinal muscular atrophy in mice caused by autonomous loss of ATP7A in the motor neuron

Victoria L. Hodgkinson; Jeffery M. Dale; Michael L. Garcia; Gary A. Weisman; Jaekwon Lee; Jonathan D. Gitlin; Michael J. Petris

ATP7A is a copper‐transporting P‐type ATPase that is essential for cellular copper homeostasis. Loss‐of‐function mutations in the ATP7A gene result in Menkes disease, a fatal neurodegenerative disorder resulting in seizures, hypotonia and failure to thrive, due to systemic copper deficiency. Most recently, rare missense mutations in ATP7A that do not impact systemic copper homeostasis have been shown to cause X‐linked spinal muscular atrophy type 3 (SMAX3), a distal hereditary motor neuropathy. An understanding of the mechanistic and pathophysiological basis of SMAX3 is currently lacking, in part because the disease‐causing mutations have been shown to confer both loss‐ and gain‐of‐function properties to ATP7A, and because there is currently no animal model of the disease. In this study, the Atp7a gene was specifically deleted in the motor neurons of mice, resulting in a degenerative phenotype consistent with the clinical features in affected patients with SMAX3, including the progressive deterioration of gait, age‐dependent muscle atrophy, denervation of neuromuscular junctions and a loss of motor neuron cell bodies. Taken together, these data reveal autonomous requirements for ATP7A that reveal essential roles for copper in the maintenance and function of the motor neuron, and suggest that SMAX3 is caused by a loss of ATP7A function that specifically impacts the spinal motor neuron. Copyright


American Journal of Physiology-gastrointestinal and Liver Physiology | 2012

Maternofetal and neonatal copper requirements revealed by enterocyte-specific deletion of the Menkes disease protein

Yanfang Wang; Sha Zhu; Victoria L. Hodgkinson; Joseph R. Prohaska; Gary A. Weisman; Jonathan D. Gitlin; Michael J. Petris

The essential requirement for copper in early development is dramatically illustrated by Menkes disease, a fatal neurodegenerative disorder of early childhood caused by loss-of-function mutations in the gene encoding the copper transporting ATPase ATP7A. In this study, we generated mice with enterocyte-specific knockout of the murine ATP7A gene (Atp7a) to test its importance in dietary copper acquisition. Although mice lacking Atp7a protein within intestinal enterocytes appeared normal at birth, they exhibited profound growth impairment and neurological deterioration as a consequence of copper deficiency, resulting in excessive mortality prior to weaning. Copper supplementation of lactating females or parenteral copper injection of the affected offspring markedly attenuated this rapid demise. Enterocyte-specific deletion of Atp7a in rescued pregnant females did not restrict embryogenesis; however, copper accumulation in the late-term fetus was severely reduced, resulting in early postnatal mortality. Taken together, these data demonstrate unique and specific requirements for enterocyte Atp7a in neonatal and maternofetal copper acquisition that are dependent on dietary copper availability, thus providing new insights into the mechanisms of gene-nutrient interaction essential for early human development.


Matrix Biology | 2011

Lysyl oxidase-like 3b is Critical for Cartilage Maturation During Zebrafish Craniofacial Development

Antonius L. van Boxtel; John M. Gansner; Henk W.J. Hakvoort; Heather Snell; Juliette Legler; Jonathan D. Gitlin

Vertebrate craniofacial development requires coordinated morphogenetic interactions between the extracellular matrix (ECM) and the differentiating chondrocytes essential for cartilage formation. Recent studies reveal a critical role for specific lysyl oxidases in ECM integrity required for embryonic development. We now demonstrate that loxl3b is abundantly expressed within the head mesenchyme of the zebrafish and is critically important for maturation of neural crest derived cartilage elements. Histological and ultrastructural analyses of cartilage elements in loxl3b morphant embryos reveal abnormal maturation of cartilage and altered chondrocyte morphology. Spatiotemporal analysis of craniofacial markers in loxl3b morphant embryos shows that cranial neural crest cells migrate normally into the developing pharyngeal arches but that differentiation and condensation markers are aberrantly expressed. We further show that the loxl3b morphant phenotype is not due to P53 mediated cell death but likely to be due to reduced chondrogenic progenitor cell proliferation within the pharyngeal arches. Taken together, these data demonstrate a novel role for loxl3b in the maturation of craniofacial cartilage and can provide new insight into the specific genetic factors important in the pathogenesis of craniofacial birth defects.


American Journal of Physiology-cell Physiology | 2015

Autonomous requirements of the Menkes disease protein in the nervous system.

Victoria L. Hodgkinson; Sha Zhu; Yanfang Wang; Erik Ladomersky; Karen Nickelson; Gary A. Weisman; Jaekwon Lee; Jonathan D. Gitlin; Michael J. Petris

Menkes disease is a fatal neurodegenerative disorder arising from a systemic copper deficiency caused by loss-of-function mutations in a ubiquitously expressed copper transporter, ATP7A. Although this disorder reveals an essential role for copper in the developing human nervous system, the role of ATP7A in the pathogenesis of signs and symptoms in affected patients, including severe mental retardation, ataxia, and excitotoxic seizures, remains unknown. To directly examine the role of ATP7A within the central nervous system, we generated Atp7a(Nes) mice, in which the Atp7a gene was specifically deleted within neural and glial cell precursors without impairing systemic copper homeostasis, and compared these mice with the mottled brindle (mo-br) mutant, a murine model of Menkes disease in which Atp7a is defective in all cells. Whereas mo-br mice displayed neurodegeneration, demyelination, and 100% mortality prior to weaning, the Atp7a(Nes) mice showed none of these phenotypes, exhibiting only mild sensorimotor deficits, increased anxiety, and susceptibility to NMDA-induced seizure. Our results indicate that the pathophysiology of severe neurological signs and symptoms in Menkes disease is the result of copper deficiency within the central nervous system secondary to impaired systemic copper homeostasis and does not arise from an intrinsic lack of ATP7A within the developing brain. Furthermore, the sensorimotor deficits, hypophagia, anxiety, and sensitivity to NMDA-induced seizure in the Atp7a(Nes) mice reveal unique autonomous requirements for ATP7A in the nervous system. Taken together, these data reveal essential roles for copper acquisition in the central nervous system in early development and suggest novel therapeutic approaches in affected patients.


Developmental Cell | 2014

Copper Homeostasis: Specialized Functions of the Late Secretory Pathway

Jonathan D. Gitlin

Differentiated cells have evolved mechanisms to adapt the functions of the late secretory pathway to the specific needs of the organism. Reporting in this issue of Developmental Cell, Polishchuk et al. (2014) demonstrate that hepatocytes utilize a unique exocytic aspect of the late endosomal/lysosomal compartment to maintain organismal copper homeostasis.

Collaboration


Dive into the Jonathan D. Gitlin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John M. Gansner

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Sha Zhu

University of Missouri

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Clara Kao

University of Chicago

View shared research outputs
Top Co-Authors

Avatar

Jaekwon Lee

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge