Jonathan D. Graves
University of Washington Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jonathan D. Graves.
The EMBO Journal | 1998
Jonathan D. Graves; Yukiko Gotoh; Kevin E. Draves; Diane Ambrose; David K. M. Han; Michael E. Wright; Jonathan Chernoff; Edward A. Clark; Edwin G. Krebs
Mst1 is a ubiquitously expressed serine–threonine kinase, homologous to the budding yeast Ste20, whose physiological regulation and cellular function are unknown. In this paper we show that Mst1 is specifically cleaved by a caspase 3‐like activity during apoptosis induced by either cross‐linking CD95/Fas or by staurosporine treatment. CD95/Fas‐induced cleavage of Mst1 was blocked by the cysteine protease inhibitor ZVAD‐fmk, the more selective caspase inhibitor DEVD‐CHO and by the viral serpin CrmA. Caspase‐mediated cleavage of Mst1 removes the C‐terminal regulatory domain and correlates with an increase in Mst1 activity in vivo, consistent with caspase‐mediated cleavage activating Mst1. Overexpression of either wild‐type Mst1 or a truncated mutant induces morphological changes characteristic of apoptosis. Furthermore, exogenously expressed Mst1 is cleaved, indicating that Mst1 can activate caspases that result in its cleavage. Kinase‐dead Mst1 did not induce morphological alterations and was not cleaved upon overexpression, indicating that Mst1 must be catalytically active in order to mediate these effects. Mst1 activates MKK6, p38 MAPK, MKK7 and SAPK in co‐transfection assays, suggesting that Mst1 may activate these pathways. Our findings suggest the existence of a positive feedback loop involving Mst1, and possibly the SAPK and p38 MAPK pathways, which serves to amplify the apoptotic response.
Pharmacology & Therapeutics | 1999
Jonathan D. Graves; Edwin G. Krebs
It is now generally accepted that protein phosphorylation-dephosphorylation has a role in the regulation of essentially all cellular functions. Thus, it is of interest that this process is involved in signal transduction. Nonetheless, the extent to which protein phosphorylation participates in signaling is truly remarkable. Almost every known signaling pathway eventually impinges on a protein kinase, or in some instances, a protein phosphatase. The diversity of these enzymes is noteworthy, and it is of interest that many biotechnology companies are eyeing them as potentially important targets for drugs. Such drugs may have important therapeutic applications, and in any event, they certainly will be useful to investigators who study signal transduction. Indeed, this already has been proven to be true.
Proceedings of the National Academy of Sciences of the United States of America | 2001
Seiji Ura; Norihisa Masuyama; Jonathan D. Graves; Yukiko Gotoh
MST1, mammalian STE20-like kinase 1, is a serine/threonine kinase that is cleaved and activated by caspases during apoptosis. MST1 is capable of inducing apoptotic morphological changes such as chromatin condensation upon overexpression. In this study, we show that MST1 contains two functional nuclear export signals (NESs) in the C-terminal domain, which is released from the N-terminal kinase domain upon caspase-mediated cleavage. Full-length MST1 is excluded from the nucleus and localized to the cytoplasm. However, either truncation of the C-terminal domain, point mutation of the two putative NESs, or treatment with leptomycin B, an inhibitor of the NES receptor, results in nuclear localization of MST1. Staurosporine treatment induces chromatin condensation, MST1 cleavage, and nuclear translocation. Staurosporine-induced chromatin condensation is partially inhibited by expressing a kinase-negative mutant of MST1, suggesting an important role of MST1 in this process. Significantly, MST1 is more efficient at inducing chromatin condensation when it is constitutively localized to the nucleus by mutation of its NESs. Moreover, inhibition of MST1 nuclear translocation by mutation of its cleavage sites reduces its ability to induce chromatin condensation. Taken together, these results suggest that truncation of the C-terminal domain of MST1 by caspases may result in translocation of MST1 into the nucleus, where it promotes chromatin condensation.
Genes to Cells | 2001
Seiji Ura; Norihisa Masuyama; Jonathan D. Graves; Yukiko Gotoh
Background MST1 is an upstream kinase of the JNK and p38 MAPK pathways whose expression induces apoptotic morphological changes such as nuclear condensation. During apoptosis, caspase cleavage of MST1 removes a C‐terminal regulatory domain, increasing the kinase activity of the MST1 N‐terminal domain. Downstream pathways of MST1 in the induction of apoptosis remain to be clarified.
Proceedings of the National Academy of Sciences of the United States of America | 2001
Thomas M. Yankee; Kevin E. Draves; Maria K. Ewings; Edward A. Clark; Jonathan D. Graves
The balance between cell survival and cell death is critical for normal lymphoid development. This balance is maintained by signals through lymphocyte antigen receptors and death receptors such as CD95/Fas. In some cells, ligating the B cell antigen receptor can protect the cell from apoptosis induced by CD95. Here we report that ligation of CD95 inhibits antigen receptor-mediated signaling. Pretreating CD40-stimulated tonsillar B cells with anti-CD95 abolished B cell antigen receptor-mediated calcium mobilization. Furthermore, CD95 ligation led to the caspase-dependent inhibition of antigen receptor-induced calcium mobilization and to the activation of mitogen-activated protein kinase pathways in B and T cell lines. A target of CD95-mediated caspase 3-like activity early in the apoptotic process is the adaptor protein GrpL/Gads. GrpL constitutively interacts with SLP-76 via its C-terminal SH3 domain to regulate transcription factors such as NF-AT. Cleavage of GrpL removes the C-terminal SH3 domain so that it is no longer capable of recruiting SLP-76 to the membrane. Transfection of a truncated form of GrpL into Jurkat T cells blocked T cell antigen receptor-induced activation of NF-AT. These results suggest that CD95 signaling can desensitize antigen receptors, in part via cleavage of the GrpL adaptor.
Journal of Immunology | 1998
Andrew Craxton; Geraldine L. Shu; Jonathan D. Graves; Jeremy Saklatvala; Edwin G. Krebs; Edward A. Clark
Proceedings of the National Academy of Sciences of the United States of America | 1996
Jonathan D. Graves; Kevin E. Draves; A. Craxton; Jeremy Saklatvala; Edwin G. Krebs; Edward A. Clark
Journal of Biological Chemistry | 2003
Josema Torres; Joe Rodriguez; Michael P. Myers; Miguel Valiente; Jonathan D. Graves; Nicholas K. Tonks; Rafael Pulido
Journal of Biological Chemistry | 2001
Jonathan D. Graves; Kevin E. Draves; Yukiko Gotoh; Edwin G. Krebs; Edward A. Clark
Journal of Immunology | 1998
Jonathan D. Graves; Kevin E. Draves; Andrew Craxton; Edwin G. Krebs; Edward A. Clark