Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan D. Johnston is active.

Publication


Featured researches published by Jonathan D. Johnston.


European Journal of Neuroscience | 2005

Photoperiod regulates multiple gene expression in the suprachiasmatic nuclei and pars tuberalis of the Siberian hamster (Phodopus sungorus)

Jonathan D. Johnston; Francis J. P. Ebling; David G. Hazlerigg

Photoperiod regulates the seasonal physiology of many mammals living in temperate latitudes. Photoperiodic information is decoded by the master circadian clock in the suprachiasmatic nuclei (SCN) of the hypothalamus and then transduced via pineal melatonin secretion. This neurochemical signal is interpreted by tissues expressing melatonin receptors (e.g. the pituitary pars tuberalis, PT) to drive physiological changes. In this study we analysed the photoperiodic regulation of the circadian clockwork in the SCN and PT of the Siberian hamster. Female hamsters were exposed to either long or short photoperiod for 8 weeks and sampled at 2‐h intervals across the 24‐h cycle. In the SCN, rhythmic expression of the clock genes Per1, Per2, Cry1, Rev‐erbα, and the clock‐controlled genes arginine vasopressin (AVP) and d‐element binding protein (DBP) was modulated by photoperiod. All of these E‐box‐containing genes tracked dawn, with earlier peak mRNA expression in long, compared to short, photoperiod. This response occurred irrespective of the presence of additional regulatory cis‐elements, suggesting photoperiodic regulation of SCN gene expression through a common E‐box‐related mechanism. In long photoperiod, expression of Cry1 and Per1 in the PT tracked the onset and offset of melatonin secretion, respectively. However, whereas Cry1 tracked melatonin onset in short period, Per1 expression was not detectably rhythmic. We therefore propose that, in the SCN, photoperiodic regulation of clock gene expression primarily occurs via E‐boxes, whereas melatonin‐driven signal transduction drives the phasing of a subset of clock genes in the PT, independently of the E‐box.


Current Biology | 2003

Photoperiod differentially regulates circadian oscillators in central and peripheral tissues of the Syrian hamster

Amanda Jayne F. Carr; Jonathan D. Johnston; Andrei G. Semikhodskii; Tania Nolan; Felino R. Cagampang; J. Anne Stirland; Andrew Loudon

In many seasonally breeding rodents, reproduction and metabolism are activated by long summer days (LD) and inhibited by short winter days (SD). After several months of SD, animals become refractory to this inhibitory photoperiod and spontaneously revert to LD-like physiology. The suprachiasmatic nuclei (SCN) house the primary circadian oscillator in mammals. Seasonal changes in photic input to this structure control many annual physiological rhythms via SCN-regulated pineal melatonin secretion, which provides an internal endocrine signal representing photoperiod. We compared LD- and SD-housed animals and show that the waveform of SCN expression for three circadian clock genes (Per1, Per2, and Cry2) is modified by photoperiod. In SD-refractory (SD-R) animals, SCN and melatonin rhythms remain locked to SD, reflecting ambient photoperiod, despite LD-like physiology. In peripheral oscillators, Per1 and Dbp rhythms are also modified by photoperiod but, in contrast to the SCN, revert to LD-like, high-amplitude rhythms in SD-R animals. Our data suggest that circadian oscillators in peripheral organs participate in photoperiodic time measurement in seasonal mammals; however, circadian oscillators operate differently in the SCN. The clear dissociation between SCN and peripheral oscillators in refractory animals implicates intermediate factor(s), not directly driven by the SCN or melatonin, in entrainment of peripheral clocks.


Diabetes | 2011

Rhythmic Diurnal Gene Expression in Human Adipose Tissue From Individuals Who Are Lean, Overweight, and Type 2 Diabetic

Daniella T. Otway; Simone Mäntele; Silvia Bretschneider; J. Wright; Paul Trayhurn; Debra J. Skene; M. Denise Robertson; Jonathan D. Johnston

OBJECTIVE Previous animal studies suggest a functional relationship between metabolism, type 2 diabetes, and the amplitude of daily rhythms in white adipose tissue (WAT). However, data interpretation is confounded by differences in genetic background and diet or limited sampling points. We have taken the novel approach of analyzing serial human WAT biopsies across a 24-h cycle in controlled laboratory conditions. RESEARCH DESIGN AND METHODS Lean (n = 8), overweight/obese (n = 11), or overweight/obese type 2 diabetic (n = 8) volunteers followed a strict sleep–wake and dietary regimen for 1 week prior to the laboratory study. They were then maintained in controlled light–dark conditions in a semirecumbent posture and fed hourly during wake periods. Subcutaneous WAT biopsies were collected every 6 h over 24 h, and gene expression was measured by quantitative PCR. RESULTS Lean individuals exhibited significant (P < 0.05) temporal changes of core clock (PER1, PER2, PER3, CRY2, BMAL1, and DBP) and metabolic (REVERBα, RIP140, and PGC1α) genes. The BMAL1 rhythm was in approximate antiphase with the other clock genes. It is noteworthy that there was no significant effect (P > 0.05) of increased body weight or type 2 diabetes on rhythmic gene expression. CONCLUSIONS The robust nature of these rhythms and their relative phasing indicate that WAT now can be considered as a peripheral tissue suitable for the study of in vivo human rhythms. Comparison of data between subject groups clearly indicates that obesity and type 2 diabetes are not related to the amplitude of rhythmic WAT gene expression in humans maintained under controlled conditions.


Chronobiology International | 2012

Identification of human plasma metabolites exhibiting time-of-day variation using an untargeted liquid chromatography-mass spectrometry metabolomic approach.

Joo Ern Ang; Revell; Mann A; Simone Mäntele; Daniella T. Otway; Jonathan D. Johnston; Alfred E. Thumser; Debra J. Skene; Florence I. Raynaud

Although daily rhythms regulate multiple aspects of human physiology, rhythmic control of the metabolome remains poorly understood. The primary objective of this proof-of-concept study was identification of metabolites in human plasma that exhibit significant 24-h variation. This was assessed via an untargeted metabolomic approach using liquid chromatography–mass spectrometry (LC-MS). Eight lean, healthy, and unmedicated men, mean age 53.6 (SD ± 6.0) yrs, maintained a fixed sleep/wake schedule and dietary regime for 1 wk at home prior to an adaptation night and followed by a 25-h experimental session in the laboratory where the light/dark cycle, sleep/wake, posture, and calorific intake were strictly controlled. Plasma samples from each individual at selected time points were prepared using liquid-phase extraction followed by reverse-phase LC coupled to quadrupole time-of-flight MS analysis in positive ionization mode. Time-of-day variation in the metabolites was screened for using orthogonal partial least square discrimination between selected time points of 10:00 vs. 22:00 h, 16:00 vs. 04:00 h, and 07:00 (d 1) vs. 16:00 h, as well as repeated-measures analysis of variance with time as an independent variable. Subsequently, cosinor analysis was performed on all the sampled time points across the 24-h day to assess for significant daily variation. In this study, analytical variability, assessed using known internal standards, was low with coefficients of variation <10%. A total of 1069 metabolite features were detected and 203 (19%) showed significant time-of-day variation. Of these, 34 metabolites were identified using a combination of accurate mass, tandem MS, and online database searches. These metabolites include corticosteroids, bilirubin, amino acids, acylcarnitines, and phospholipids; of note, the magnitude of the 24-h variation of these identified metabolites was large, with the mean ratio of oscillation range over MESOR (24-h time series mean) of 65% (95% confidence interval [CI]: 49–81%). Importantly, several of these human plasma metabolites, including specific acylcarnitines and phospholipids, were hitherto not known to be 24-h variant. These findings represent an important baseline and will be useful in guiding the design and interpretation of future metabolite-based studies. (Author correspondence: [email protected] or [email protected])


The FASEB Journal | 2003

Evidence for an endogenous per1- and ICER-independent seasonal timer in the hamster pituitary gland

Jonathan D. Johnston; Felino R. Cagampang; J. Anne Stirland; Amanda Jayne F. Carr; Michael R. H. White; Julian R. E. Davis; Andrews S.I. Loudon

Most mammals use changing annual day‐length cycles to regulate pineal melatonin secretion and thereby drive many physiological rhythms including reproduction, metabolism, immune function, and pelage. Prolonged exposure to short winter day lengths results in refractoriness, a spontaneous reversion to long‐day physiological status. Despite its critical role in the timing of seasonal rhythms, refractoriness remains poorly understood. The aim of this study was therefore to describe cellular and molecular mechanisms driving the seasonal secretion of a key hormone, prolactin, in refractory Syrian hamsters. We used recently developed single cell hybridization and reporter assays to show that this process is initiated by timed reactivation of endocrine signaling from the pars tuberalis (PT) region of the pituitary gland, a well‐defined melatonin target site, causing renewed activation of prolactin gene expression. This timed signaling is independent of per1 clock gene expression in the suprachiasmatic nuclei and PT and of melatonin secretion, which continue to track day length. Within the PT, there is also a continued short day‐like profile of ICER expression, suggesting that the change in hormone secretion is independent of cAMP signaling. Our data thus identify the PT as a key anatomical structure involved in endogenous seasonal timing mechanisms, which breaks from prevailing day length‐induced gene expression.—Johnston, J. D., Cagampang, F. R. A., Stirland, J. A., Carr, A.‐J. F., White, M. R. H., Davis, J. R. E., Loudon, A. S. I. FASEB J. 17, 810–815 (2003)


Chronobiology International | 2009

CIRCADIAN RHYTHMICITY IN MURINE PRE-ADIPOCYTE AND ADIPOCYTE CELLS

Daniella T. Otway; Gary Frost; Jonathan D. Johnston

Adipose tissue is central to metabolic homeostasis, signaling in part through the secretion of molecules termed adipokines. Circadian rhythms play an important role in adipose physiology, with plasma adipokine concentration and ∼20 % of the murine adipose transcriptome undergoing 24 h variation. However, due to the heterogeneity of adipose tissue and rhythmical input from both neuronal and humoral signals, the cellular basis of adipose rhythms is unclear. We tested the hypothesis that adipocyte cells contain a circadian clock that drives rhythmic mRNA expression and adipokine secretion. From the murine pre-adipocyte 3T3-L1 cell line, we generated populations of both pre-adipocytes and differentiated adipocytes. Cells were then treated with a 2 h serum pulse and sampled every 4 h over a 48 h period. Expression of clock gene, ‘metabolic’ gene (PPARα, PPARγ, SREBP1), and adipokine mRNA was analyzed by quantitative real-time PCR, and secretion of the adipokines leptin and adiponectin was measured in culture medium from differentiated adipocytes. In pre-adipocytes, we observed robust rhythms of clock genes Per2, Rev-erbα, and Dbp, but not of Per1, Cry1, Bmal1, or any of the ‘metabolic’ genes. Adipocytes produced similar temporal profiles of mRNA expression, albeit with a markedly reduced amplitude of Per2 and Dbp rhythms. Despite no circadian rhythm of adipokine mRNA expression, leptin accumulation in the culture medium suggested circadian control of leptin secretion from adipocytes. Adiponectin secretion showed temporal variation, but without any apparent circadian rhythmicity. Our data, therefore, suggest that an endogenous adipocyte clock controls the rhythmic expression of only a subset of genes that are reported to exhibit 24 h rhythmicity in murine adipose tissue. Moreover, secretion of leptin may also be regulated by the adipocyte clock. (Author correspondence: [email protected]).


Proceedings of the National Academy of Sciences of the United States of America | 2003

Gonadotrophin-releasing hormone drives melatonin receptor down-regulation in the developing pituitary gland.

Jonathan D. Johnston; Sophie Messager; Francis J. P. Ebling; Lynda M. Williams; Perry Barrett; David G. Hazlerigg

Melatonin is produced nocturnally by the pineal gland and is a neurochemical representation of time. It regulates neuroendocrine target tissues through G-protein-coupled receptors, of which MT1 is the predominant subtype. These receptors are transiently expressed in several fetal and neonatal tissues, suggesting distinct roles for melatonin in development and that specific developmental cues define time windows for melatonin sensitivity. We have investigated MT1 gene expression in the rat pituitary gland. MT1 mRNA is confined to the pars tuberalis region of the adult pituitary, but in neonates extends into the ventral pars distalis and colocalizes with luteinizing hormone β-subunit (LHβ) expression. This accounts for the well documented transient sensitivity of rat gonadotrophs to melatonin in the neonatal period. Analysis of an upstream fragment of the rat MT1 gene revealed multiple putative response elements for the transcription factor pituitary homeobox-1 (Pitx-1), which is expressed in the anterior pituitary from Rathkes pouch formation. A Pitx-1 expression vector potently stimulated expression of both MT1-luciferase and LHβ-luciferase reporter constructs in COS-7 cells. Interestingly, transcription factors that synergize with Pitx-1 to trans-activate gonadotroph-associated genes did not potentiate Pitx-1-induced MT1-luciferase activity. Moreover, the transcription factor, early growth response factor-1, which is induced by gonadotrophin-releasing hormone (GnRH) and trans-activates LHβ expression, attenuated Pitx-1-induced MT1-luciferase activity. Finally, pituitary MT1 gene expression was 4-fold higher in hypogonadal (hpg) mice, which do not synthesize GnRH, than in their wild-type littermates. These data suggest that establishment of a mature hypothalamic GnRH input drives the postnatal decline in pituitary MT1 gene expression.


The FASEB Journal | 2012

Assessment of circadian rhythms in humans: comparison of real-time fibroblast reporter imaging with plasma melatonin

Sibah Hasan; Nayantara Santhi; Alpar S. Lazar; Ana Slak; June Lo; Malcolm von Schantz; Simon N. Archer; Jonathan D. Johnston; Derk-Jan Dijk

We compared the period of the rhythm of plasma melatonin, driven by the hypothalamic circadian pacemaker, to in vitro periodicity in cultured peripheral fibroblasts to assess the effects on these rhythms of a polymorphism of PER3 (rs57875989), which is associated with sleep timing. In vitro circadian period was determined using luminometry of cultured fibroblasts, in which the expression of firefly luciferase was driven by the promoter of the circadian gene Arntl (Bmal1). The period of the melatonin rhythm was assessed in a 9‐d forced desynchrony protocol, minimizing confounding effects of sleep‐wake and light‐dark cycles on circadian rhythmicity. In vitro periods (32 participants, 24.61±0.33 h, mean±SD) were longer than in vivo periods (31 participants, 24.16±0.17 h; P> 0.0001) but did not differ between PER3 genotypes (P>0.4). Analyses of replicate in vitro assessments demonstrated that circadian period was reproducible within individuals (intraclass correlation=0.62), but in vivo and in vitro period assessments did not correlate (P>0.9). In accordance with circadian entrainment theory, in vivo period correlated with the timing of melatonin (P>0.05) at baseline and with diurnal preference (P>0.05). Individual circadian rhythms can be reliably assessed in fibroblasts but may not correlate with physiological rhythms driven by the central circadian pacemaker.—Hasan, S., Santhi, N., Lazar, A.S., Slak, A., Lo, J., von Schantz, M., Archer, S. N., Johnston, J. D., Dijk, D.‐J. Assessment of circadian rhythms in humans: comparison of real‐time fibroblast reporter imaging with plasma melatonin. FASEB J. 26, 2414‐2423 (2012). www.fasebj.org


Neuroscience | 2004

Rhythmic melatonin secretion does not correlate with the expression of arylalkylamine N-ACETYLTRANSFERASE, inducible cyclic amp early repressor, period1 or cryptochrome1 mRNA in the sheep pineal

Jonathan D. Johnston; R Bashforth; A Diack; Håkan Andersson; Gerald A. Lincoln; David G. Hazlerigg

The pineal gland, through nocturnal melatonin, acts as a neuroendocrine transducer of daily and seasonal time. Melatonin synthesis is driven by rhythmic activation of the rate-limiting enzyme, arylalkylamine N-acetyltransferase (AA-NAT). In ungulates, AA-NAT mRNA is constitutively high throughout the 24-h cycle, and melatonin production is primarily controlled through effects on AA-NAT enzyme activity; this is in contrast to dominant transcriptional control in rodents. To determine whether there has been a selective loss of circadian control of AA-NAT mRNA expression in the sheep pineal, we measured the expression of other genes known to be rhythmic in rodents (inducible cAMP early repressor ICER, the circadian clock genes Period1 and Cryptochrome1, as well as AA-NAT). We first assayed gene expression in pineal glands collected from Soay sheep adapted to short days (Light: dark, 8-h: 16-h), and killed at 4-h intervals through 24-h. We found no evidence for rhythmic expression of ICER, AA-NAT or Cryptochrome1 under these conditions, whilst Period1 showed a low amplitude rhythm of expression, with higher values during the dark period. In a second group of animals, lights out was delayed by 8-h during the final 24-h sampling period, a manipulation that causes an immediate shortening of the period of melatonin secretion. This did not significantly affect the expression of ICER, AA-NAT or Cryptochrome1 in the pineal, whilst a slight suppressive effect on overall Per1 levels was observed. The attenuated response to photoperiod change appears to be specific to the ovine pineal, as the first long day induced rapid changes of Period1 and ICER expression in the hypothalamic suprachiasmatic nuclei and pituitary pars tuberalis, respectively. Overall, our data suggest a general reduction of circadian control of transcript abundance in the ovine pineal gland, consistent with a marked evolutionary divergence in the mechanism regulating melatonin production between terrestrial ruminants and fossorial rodents.


Nutrition Research Reviews | 2014

Physiological responses to food intake throughout the day

Jonathan D. Johnston

Circadian rhythms act to optimise many aspects of our biology and thereby ensure that physiological processes are occurring at the most appropriate time. The importance of this temporal control is demonstrated by the strong associations between circadian disruption, morbidity and disease pathology. There is now a wealth of evidence linking the circadian timing system to metabolic physiology and nutrition. Relationships between these processes are often reciprocal, such that the circadian system drives temporal changes in metabolic pathways and changes in metabolic/nutritional status alter core molecular components of circadian rhythms. Examples of metabolic rhythms include daily changes in glucose homeostasis, insulin sensitivity and postprandial response. Time of day alters lipid and glucose profiles following individual meals whereas, over a longer time scale, meal timing regulates adiposity and body weight; these changes may occur via the ability of timed feeding to synchronise local circadian rhythms in metabolically active tissues. Much of the work in this research field has utilised animal and cellular model systems. Although these studies are highly informative and persuasive, there is a largely unmet need to translate basic biological data to humans. The results of such translational studies may open up possibilities for using timed dietary manipulations to help restore circadian synchrony and downstream physiology. Given the large number of individuals with disrupted rhythms due to, for example, shift work, jet-lag, sleep disorders and blindness, such dietary manipulations could provide widespread improvements in health and also economic performance.

Collaboration


Dive into the Jonathan D. Johnston's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew Loudon

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge