Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan D. Kenny is active.

Publication


Featured researches published by Jonathan D. Kenny.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Optogenetic activation of cholinergic neurons in the PPT or LDT induces REM sleep

Christa J. Van Dort; Daniel P. Zachs; Jonathan D. Kenny; Shu Zheng; Rebecca R. Goldblum; Noah A. Gelwan; Daniel Ramos; Michael A. Nolan; Karen Wang; Feng-Ju Weng; Yingxi Lin; Matthew A. Wilson; Emery N. Brown

Significance Rapid eye movement (REM) sleep is a critical component of restful sleep, yet the mechanisms that control REM sleep are incompletely understood. Brainstem cholinergic neurons have been implicated in REM sleep regulation, but heterogeneous cell types in the area have made it difficult to determine the specific role of each population, leading to a debate about the importance of cholinergic neurons. Therefore, we selectively activated brainstem cholinergic neurons to determine their role in REM sleep regulation. We found that activation of cholinergic neurons during non-REM sleep increased the number of REM sleep episodes but not REM sleep duration. Our data demonstrate that brainstem cholinergic neurons are important modulators of REM sleep and clarify their role in REM sleep initiation. Rapid eye movement (REM) sleep is an important component of the natural sleep/wake cycle, yet the mechanisms that regulate REM sleep remain incompletely understood. Cholinergic neurons in the mesopontine tegmentum have been implicated in REM sleep regulation, but lesions of this area have had varying effects on REM sleep. Therefore, this study aimed to clarify the role of cholinergic neurons in the pedunculopontine tegmentum (PPT) and laterodorsal tegmentum (LDT) in REM sleep generation. Selective optogenetic activation of cholinergic neurons in the PPT or LDT during non-REM (NREM) sleep increased the number of REM sleep episodes and did not change REM sleep episode duration. Activation of cholinergic neurons in the PPT or LDT during NREM sleep was sufficient to induce REM sleep.


Anesthesiology | 2014

Electrical Stimulation of the Ventral Tegmental Area Induces Reanimation from General Anesthesia

Ken Solt; Christa J. Van Dort; Jessica J. Chemali; Norman E. Taylor; Jonathan D. Kenny; Emery N. Brown

Background:Methylphenidate or a D1 dopamine receptor agonist induces reanimation (active emergence) from general anesthesia. The authors tested whether electrical stimulation of dopaminergic nuclei also induces reanimation from general anesthesia. Methods:In adult rats, a bipolar insulated stainless steel electrode was placed in the ventral tegmental area (VTA, n = 5) or substantia nigra (n = 5). After a minimum 7-day recovery period, the isoflurane dose sufficient to maintain loss of righting was established. Electrical stimulation was initiated and increased in intensity every 3 min to a maximum of 120 µA. If stimulation restored the righting reflex, an additional experiment was performed at least 3 days later during continuous propofol anesthesia. Histological analysis was conducted to identify the location of the electrode tip. In separate experiments, stimulation was performed in the prone position during general anesthesia with isoflurane or propofol, and the electroencephalogram was recorded. Results:To maintain loss of righting, the dose of isoflurane was 0.9% ± 0.1 vol%, and the target plasma dose of propofol was 4.4 ± 1.1 µg/ml (mean ± SD). In all rats with VTA electrodes, electrical stimulation induced a graded arousal response including righting that increased with current intensity. VTA stimulation induced a shift in electroencephalogram peak power from &dgr; (<4 Hz) to &thgr; (4–8 Hz). In all rats with substantia nigra electrodes, stimulation did not elicit an arousal response or significant electroencephalogram changes. Conclusions:Electrical stimulation of the VTA, but not the substantia nigra, induces reanimation during general anesthesia with isoflurane or propofol. These results are consistent with the hypothesis that dopamine release by VTA neurons, but not substantia nigra neurons, induces reanimation from general anesthesia.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Optogenetic activation of dopamine neurons in the ventral tegmental area induces reanimation from general anesthesia

Norman E. Taylor; Christa J. Van Dort; Jonathan D. Kenny; JunZhu Pei; Jennifer Guidera; Ksenia Vlasov; Justin Lee; Edward S. Boyden; Emery N. Brown; Ken Solt

Significance Although dopamine is known to promote wakefulness, the specific dopamine circuits in the brain that regulate arousal are not clear. Here we report that selective optogenetic stimulation of ventral tegmental area (VTA) dopamine neurons in mice produces a powerful arousal response sufficient to restore conscious behaviors, including the righting reflex, during continuous, steady-state general anesthesia. Although previous studies found that VTA dopamine neurons do not appear to play a central role in regulating sleep–wake transitions, our findings demonstrate that selective stimulation of these neurons is sufficient to induce the transition from an unconscious, anesthetized state to an awake state. These results suggest that VTA DA neurons play a critical role in promoting wakefulness. Dopamine (DA) promotes wakefulness, and DA transporter inhibitors such as dextroamphetamine and methylphenidate are effective for increasing arousal and inducing reanimation, or active emergence from general anesthesia. DA neurons in the ventral tegmental area (VTA) are involved in reward processing, motivation, emotion, reinforcement, and cognition, but their role in regulating wakefulness is less clear. The current study was performed to test the hypothesis that selective optogenetic activation of VTA DA neurons is sufficient to induce arousal from an unconscious, anesthetized state. Floxed-inverse (FLEX)-Channelrhodopsin2 (ChR2) expression was targeted to VTA DA neurons in DA transporter (DAT)-cre mice (ChR2+ group; n = 6). Optical VTA stimulation in ChR2+ mice during continuous, steady-state general anesthesia (CSSGA) with isoflurane produced behavioral and EEG evidence of arousal and restored the righting reflex in 6/6 mice. Pretreatment with the D1 receptor antagonist SCH-23390 before optical VTA stimulation inhibited the arousal responses and restoration of righting in 6/6 ChR2+ mice. In control DAT-cre mice, the VTA was targeted with a viral vector lacking the ChR2 gene (ChR2− group; n = 5). VTA optical stimulation in ChR2− mice did not restore righting or produce EEG changes during isoflurane CSSGA in 5/5 mice. These results provide compelling evidence that selective stimulation of VTA DA neurons is sufficient to induce the transition from an anesthetized, unconscious state to an awake state, suggesting critical involvement in behavioral arousal.


Anesthesiology | 2013

Real-time Closed-loop Control in a Rodent Model of Medically Induced Coma Using Burst Suppression

ShiNung Ching; Max Y. Liberman; Jessica J. Chemali; M. Brandon Westover; Jonathan D. Kenny; Ken Solt; Patrick L. Purdon; Emery N. Brown

Background:A medically induced coma is an anesthetic state of profound brain inactivation created to treat status epilepticus and to provide cerebral protection after traumatic brain injuries. The authors hypothesized that a closed-loop anesthetic delivery system could automatically and precisely control the electroencephalogram state of burst suppression and efficiently maintain a medically induced coma. Methods:In six rats, the authors implemented a closed-loop anesthetic delivery system for propofol consisting of: a computer-controlled pump infusion, a two-compartment pharmacokinetics model defining propofol’s electroencephalogram effects, the burst-suppression probability algorithm to compute in real time from the electroencephalogram the brain’s burst-suppression state, an online parameter-estimation procedure and a proportional-integral controller. In the control experiment each rat was randomly assigned to one of the six burst-suppression probability target trajectories constructed by permuting the burst-suppression probability levels of 0.4, 0.65, and 0.9 with linear transitions between levels. Results:In each animal the controller maintained approximately 60 min of tight, real-time control of burst suppression by tracking each burst-suppression probability target level for 15 min and two between-level transitions for 5–10 min. The posterior probability that the closed-loop anesthetic delivery system was reliable across all levels was 0.94 (95% CI, 0.77–1.00; n = 18) and that the system was accurate across all levels was 1.00 (95% CI, 0.84–1.00; n = 18). Conclusion:The findings of this study establish the feasibility of using a closed-loop anesthetic delivery systems to achieve in real time reliable and accurate control of burst suppression in rodents and suggest a paradigm to precisely control medically induced coma in patients.


BJA: British Journal of Anaesthesia | 2015

Ageing delays emergence from general anaesthesia in rats by increasing anaesthetic sensitivity in the brain

Jessica J. Chemali; Jonathan D. Kenny; O. Olutola; Norman E. Taylor; E.Y. Kimchi; Patrick L. Purdon; Emery N. Brown; Ken Solt

BACKGROUND Little is known about ageing-related changes in the brain that affect emergence from general anaesthesia. We used young adult and aged Fischer 344 rats to test the hypothesis that ageing delays emergence from general anaesthesia by increasing anaesthetic sensitivity in the brain. METHODS Time to emergence was determined for isoflurane (1.5 vol% for 45 min) and propofol (8 mg kg(-1) i.v.). The dose of isoflurane required to maintain loss of righting (LOR) was established in young adult and aged rats. The efficacy of methylphenidate to reverse LOR from general anaesthesia was tested. Separate young adult and aged rats with implanted electroencephalogram (EEG) electrodes were used to test whether ageing increases sensitivity to anaesthetic-induced burst suppression. RESULTS Mean time to emergence from isoflurane anaesthesia was 47 s [95% CI 33, 60; young adult) compared with 243 s (95% CI 185, 308; aged). For propofol, mean time to emergence was 13.1 min (95% CI 11.9, 14.0; young adult) compared with 23.1 min (95% CI 18.8, 27.9; aged). These differences were statistically significant. When methylphenidate was administered after propofol, the mean time to emergence decreased to 6.6 min (95% CI 5.9, 7.1; young adult) and 10.2 min (95% CI 7.9, 12.3; aged). These reductions were statistically significant. Methylphenidate restored righting in all rats during continuous isoflurane anaesthesia. Aged rats had lower EEG power and were more sensitive to anaesthetic-induced burst suppression. CONCLUSIONS Ageing delays emergence from general anaesthesia. This is due, at least in part, to increased anaesthetic sensitivity in the brain. Further studies are warranted to establish the underlying causes.


PLOS ONE | 2015

Dextroamphetamine (but Not Atomoxetine) Induces Reanimation from General Anesthesia: Implications for the Roles of Dopamine and Norepinephrine in Active Emergence

Jonathan D. Kenny; Norman E. Taylor; Emery N. Brown; Ken Solt

Methylphenidate induces reanimation (active emergence) from general anesthesia in rodents, and recent evidence suggests that dopaminergic neurotransmission is important in producing this effect. Dextroamphetamine causes the direct release of dopamine and norepinephrine, whereas atomoxetine is a selective reuptake inhibitor for norepinephrine. Like methylphenidate, both drugs are prescribed to treat Attention Deficit Hyperactivity Disorder. In this study, we tested the efficacy of dextroamphetamine and atomoxetine for inducing reanimation from general anesthesia in rats. Emergence from general anesthesia was defined by return of righting. During continuous sevoflurane anesthesia, dextroamphetamine dose-dependently induced behavioral arousal and restored righting, but atomoxetine did not (n = 6 each). When the D1 dopamine receptor antagonist SCH-23390 was administered prior to dextroamphetamine under the same conditions, righting was not restored (n = 6). After a single dose of propofol (8 mg/kg IV), the mean emergence times for rats that received normal saline (vehicle) and dextroamphetamine (1 mg/kg IV) were 641 sec and 404 sec, respectively (n = 8 each). The difference was statistically significant. Although atomoxetine reduced mean emergence time to 566 sec (n = 8), this decrease was not statistically significant. Spectral analysis of electroencephalogram recordings revealed that dextroamphetamine and atomoxetine both induced a shift in peak power from δ (0.1–4 Hz) to θ (4–8 Hz) during continuous sevoflurane general anesthesia, which was not observed when animals were pre-treated with SCH-23390. In summary, dextroamphetamine induces reanimation from general anesthesia in rodents, but atomoxetine does not induce an arousal response under the same experimental conditions. This supports the hypothesis that dopaminergic stimulation during general anesthesia produces a robust behavioral arousal response. In contrast, selective noradrenergic stimulation causes significant neurophysiological changes, but does not promote behavioral arousal during general anesthesia. We hypothesize that dextroamphetamine is more likely than atomoxetine to be clinically useful for restoring consciousness in anesthetized patients, mainly due to its stimulation of dopaminergic neurotransmission.


Behavioural Brain Research | 2016

Electrical stimulation of the parabrachial nucleus induces reanimation from isoflurane general anesthesia

Fanuel Muindi; Jonathan D. Kenny; Norman E. Taylor; Ken Solt; Matthew A. Wilson; Emery N. Brown; Christa J. Van Dort

Clinically, emergence from general anesthesia is viewed as a passive process where anesthetics are discontinued at the end of surgery and anesthesiologists wait for the drugs to wear off. The mechanisms involved in emergence are not well understood and there are currently no drugs that can actively reverse the state of general anesthesia. An emerging hypothesis states that brain regions that control arousal become active during emergence and are a key part of the return to wakefulness. In this study, we tested the hypothesis that electrical activation of the glutamatergic parabrachial nucleus (PBN) in the brainstem is sufficient to induce reanimation (active emergence) during continuous isoflurane general anesthesia. Using c-Fos immunohistochemistry as a marker of neural activity, we first show a selective increase in active neurons in the PBN during passive emergence from isoflurane anesthesia. We then electrically stimulated the PBN to assess whether it is sufficient to induce reanimation from isoflurane general anesthesia. Stimulation induced behavioral arousal and restoration of the righting reflex during continuous isoflurane general anesthesia. In contrast, stimulation of the nearby central inferior colliculus (CIC) did not restore the righting reflex. Spectral analysis of the electroencephalogram (EEG) revealed that stimulation produced a significant decrease in EEG delta power during PBN stimulation. The results are consistent with the hypothesis that the PBN provides critical arousal input during emergence from isoflurane anesthesia.


Anesthesia & Analgesia | 2016

Physostigmine and Methylphenidate Induce Distinct Arousal States During Isoflurane General Anesthesia in Rats.

Jonathan D. Kenny; Jessica J. Chemali; Joseph F. Cotten; Christa J. Van Dort; Seong-Eun Kim; Demba Ba; Norman E. Taylor; Emery N. Brown; Ken Solt

BACKGROUND:Although emergence from general anesthesia is clinically treated as a passive process driven by the pharmacokinetics of drug clearance, agents that hasten recovery from general anesthesia may be useful for treating delayed emergence, emergence delirium, and postoperative cognitive dysfunction. Activation of central monoaminergic neurotransmission with methylphenidate has been shown to induce reanimation (active emergence) from general anesthesia. Cholinergic neurons in the brainstem and basal forebrain are also known to promote arousal. The objective of this study was to test the hypothesis that physostigmine, a centrally acting cholinesterase inhibitor, induces reanimation from isoflurane anesthesia in adult rats. METHODS:The dose-dependent effects of physostigmine on time to emergence from a standardized isoflurane general anesthetic were tested. It was then determined whether physostigmine restores righting during continuous isoflurane anesthesia. In a separate group of rats with implanted extradural electrodes, physostigmine was administered during continuous inhalation of 1.0% isoflurane, and the electroencephalogram changes were recorded. Finally, 2.0% isoflurane was used to induce burst suppression, and the effects of physostigmine and methylphenidate on burst suppression probability (BSP) were tested. RESULTS:Physostigmine delayed time to emergence from isoflurane anesthesia at doses ≥0.2 mg/kg (n = 9). During continuous isoflurane anesthesia (0.9% ± 0.1%), physostigmine did not restore righting (n = 9). Blocking the peripheral side effects of physostigmine with the coadministration of glycopyrrolate (a muscarinic antagonist that does not cross the blood–brain barrier) produced similar results (n = 9 each). However, during inhalation of 1.0% isoflurane, physostigmine shifted peak electroencephalogram power from &dgr; (<4 Hz) to &thgr; (4–8 Hz) in 6 of 6 rats. During continuous 2.0% isoflurane anesthesia, physostigmine induced large, statistically significant decreases in BSP in 6 of 6 rats, whereas methylphenidate did not. CONCLUSIONS:Unlike methylphenidate, physostigmine does not accelerate time to emergence from isoflurane anesthesia and does not restore righting during continuous isoflurane anesthesia. However, physostigmine consistently decreases BSP during deep isoflurane anesthesia, whereas methylphenidate does not. These findings suggest that activation of cholinergic neurotransmission during isoflurane anesthesia produces arousal states that are distinct from those induced by monoaminergic activation.


PMC | 2016

Physostigmine and Methylphenidate Induce Distinct Arousal States During Isoflurane General Anesthesia in Rats

Jonathan D. Kenny; Jessica J. Chemali; Joseph F. Cotten; Christa J. Van Dort; Norman E. Taylor; Emery N. Brown; Ken Solt; Seong-Eun Kim; Demba Ba


Frontiers Research Foundation | 2014

Propofol and sevoflurane induce distinct burst suppression patterns in rats

M. Brandon Westover; ShiNung Ching; Emery N. Brown; Ken Solt; Jonathan D. Kenny

Collaboration


Dive into the Jonathan D. Kenny's collaboration.

Top Co-Authors

Avatar

Emery N. Brown

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Demba Ba

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

ShiNung Ching

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge