Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan D. Oliner is active.

Publication


Featured researches published by Jonathan D. Oliner.


Cancer Research | 2010

Complementary Actions of Inhibitors of Angiopoietin-2 and VEGF on Tumor Angiogenesis and Growth

Hiroya Hashizume; Beverly L. Falcon; Takashi Kuroda; Peter Baluk; Angela Coxon; Dongyin Yu; James Bready; Jonathan D. Oliner; Donald M. McDonald

Inhibition of angiopoietin-2 (Ang2) can slow tumor growth, but the underlying mechanism is not fully understood. Because Ang2 is expressed in growing blood vessels and promotes angiogenesis driven by vascular endothelial growth factor (VEGF), we asked whether the antitumor effect of Ang2 inhibition results from reduced sprouting angiogenesis and whether the effect is augmented by inhibition of VEGF from tumor cells. Using Colo205 human colon carcinomas in nude mice as a model, we found that selective inhibition of Ang2 by the peptide-Fc fusion protein L1-7(N) reduced the number of vascular sprouts by 46% and tumor growth by 62% over 26 days. Strikingly, when the Ang2 inhibitor was combined with a function-blocking anti-VEGF antibody, the number of sprouts was reduced by 82%, tumor vascularity was reduced by 67%, and tumor growth slowed by 91% compared with controls. The reduction in tumor growth was accompanied by decreased cell proliferation and increased apoptosis. We conclude that inhibition of Ang2 slows tumor growth by limiting the expansion of the tumor vasculature by sprouting angiogenesis, in a manner that is complemented by concurrent inhibition of VEGF and leads to reduced proliferation and increased apoptosis of tumor cells.


American Journal of Pathology | 2009

Contrasting Actions of Selective Inhibitors of Angiopoietin-1 and Angiopoietin-2 on the Normalization of Tumor Blood Vessels

Beverly L. Falcon; Hiroya Hashizume; Petros Koumoutsakos; Jeyling Chou; James Bready; Angela Coxon; Jonathan D. Oliner; Donald M. McDonald

Angiopoietin-1 (Ang1) and angiopoietin-2 (Ang2) have complex actions in angiogenesis and vascular remodeling due to their effects on Tie2 receptor signaling. Ang2 blocks Ang1-mediated activation of Tie2 in endothelial cells under certain conditions but is a Tie2 receptor agonist in others. We examined the effects of selective inhibitors of Ang1 (mL4-3) or Ang2 (L1-7[N]), alone or in combination, on the vasculature of human Colo205 tumors in mice. The Ang2 inhibitor decreased the overall abundance of tumor blood vessels by reducing tumor growth and keeping vascular density constant. After inhibition of Ang2, tumor vessels had many features of normal blood vessels (normalization), as evidenced by junctional accumulation of vascular endothelial-cadherin, junctional adhesion molecule-A, and platelet/endothelial cell adhesion molecule-1 in endothelial cells, increased pericyte coverage, reduced endothelial sprouting, and remodeling into smaller, more uniform vessels. The Ang1 inhibitor by itself had little noticeable effect on the tumor vasculature. However, when administered with the Ang2 inhibitor, the Ang1 inhibitor prevented tumor vessel normalization, but not the reduction in tumor vascularity produced by the Ang2 inhibitor. These findings are consistent with a model whereby inhibition of Ang2 leads to normalization of tumor blood vessels by permitting the unopposed action of Ang1, but decreases tumor vascularity primarily by blocking Ang2 actions.


Journal of Medicinal Chemistry | 2012

Structure-based design of novel inhibitors of the MDM2-p53 interaction.

Yosup Rew; Daqing Sun; Felix Gonzalez-Lopez de Turiso; Michael D. Bartberger; Hilary P. Beck; Jude Canon; Ada Chen; David Chow; Jeffrey Deignan; Brian M. Fox; Darin Gustin; Xin Huang; Min Jiang; Xianyun Jiao; Lixia Jin; Frank Kayser; David J. Kopecky; Yihong Li; Mei-Chu Lo; Alexander M. Long; Klaus Michelsen; Jonathan D. Oliner; Tao Osgood; Mark L. Ragains; Anne Y. Saiki; Steve Schneider; Maria M. Toteva; Peter Yakowec; Xuelei Yan; Qiuping Ye

Structure-based rational design led to the discovery of novel inhibitors of the MDM2-p53 protein-protein interaction. The affinity of these compounds for MDM2 was improved through conformational control of both the piperidinone ring and the appended N-alkyl substituent. Optimization afforded 29 (AM-8553), a potent and selective MDM2 inhibitor with excellent pharmacokinetic properties and in vivo efficacy.


Molecular Cancer Therapeutics | 2010

Context-Dependent Role of Angiopoietin-1 Inhibition in the Suppression of Angiogenesis and Tumor Growth: Implications for AMG 386, an Angiopoietin-1/2–Neutralizing Peptibody

Angela Coxon; James Bready; Hosung Min; Stephen Kaufman; Juan Leal; Dongyin Yu; Tani Ann Lee; Ji-Rong Sun; Juan Estrada; Brad Bolon; James McCabe; Ling Wang; Karen Rex; Sean Caenepeel; Paul E. Hughes; David Cordover; Haejin Kim; Seog Joon Han; Mark Leo Michaels; Eric Hsu; Grant Shimamoto; Russell C. Cattley; Eunju Hurh; Linh T. Nguyen; Shao Xiong Wang; Anthony Ndifor; Isaac J. Hayward; Beverly L. Falcon; Donald M. McDonald; Luke Li

AMG 386 is an investigational first-in-class peptide-Fc fusion protein (peptibody) that inhibits angiogenesis by preventing the interaction of angiopoietin-1 (Ang1) and Ang2 with their receptor, Tie2. Although the therapeutic value of blocking Ang2 has been shown in several models of tumorigenesis and angiogenesis, the potential benefit of Ang1 antagonism is less clear. To investigate the consequences of Ang1 neutralization, we have developed potent and selective peptibodies that inhibit the interaction between Ang1 and its receptor, Tie2. Although selective Ang1 antagonism has no independent effect in models of angiogenesis-associated diseases (cancer and diabetic retinopathy), it induces ovarian atrophy in normal juvenile rats and inhibits ovarian follicular angiogenesis in a hormone-induced ovulation model. Surprisingly, the activity of Ang1 inhibitors seems to be unmasked in some disease models when combined with Ang2 inhibitors, even in the context of concurrent vascular endothelial growth factor inhibition. Dual inhibition of Ang1 and Ang2 using AMG 386 or a combination of Ang1- and Ang2-selective peptibodies cooperatively suppresses tumor xenograft growth and ovarian follicular angiogenesis; however, Ang1 inhibition fails to augment the suppressive effect of Ang2 inhibition on tumor endothelial cell proliferation, corneal angiogenesis, and oxygen-induced retinal angiogenesis. In no case was Ang1 inhibition shown to (a) confer superior activity to Ang2 inhibition or dual Ang1/2 inhibition or (b) antagonize the efficacy of Ang2 inhibition. These results imply that Ang1 plays a context-dependent role in promoting postnatal angiogenesis and that dual Ang1/2 inhibition is superior to selective Ang2 inhibition for suppression of angiogenesis in some postnatal settings. Mol Cancer Ther; 9(10); 2641–51. ©2010 AACR.


Journal of Medicinal Chemistry | 2014

Discovery of AMG 232, a Potent, Selective, and Orally Bioavailable MDM2–p53 Inhibitor in Clinical Development

Daqing Sun; Zhihong Li; Yosup Rew; Michael W. Gribble; Michael D. Bartberger; Hilary P. Beck; Jude Canon; Ada Chen; Xiaoqi Chen; David Chow; Jeffrey Deignan; Jason Duquette; John Eksterowicz; Benjamin Fisher; Brian M. Fox; Jiasheng Fu; Ana Z. Gonzalez; Felix Gonzalez-Lopez de Turiso; Jonathan B. Houze; Xin Huang; Min Jiang; Lixia Jin; Frank Kayser; Jiwen Liu; Mei-Chu Lo; Alexander M. Long; Brian Lucas; Lawrence R. McGee; Joel McIntosh; Jeff Mihalic

We recently reported the discovery of AM-8553 (1), a potent and selective piperidinone inhibitor of the MDM2-p53 interaction. Continued research investigation of the N-alkyl substituent of this series, focused in particular on a previously underutilized interaction in a shallow cleft on the MDM2 surface, led to the discovery of a one-carbon tethered sulfone which gave rise to substantial improvements in biochemical and cellular potency. Further investigation produced AMG 232 (2), which is currently being evaluated in human clinical trials for the treatment of cancer. Compound 2 is an extremely potent MDM2 inhibitor (SPR KD = 0.045 nM, SJSA-1 EdU IC50 = 9.1 nM), with remarkable pharmacokinetic properties and in vivo antitumor activity in the SJSA-1 osteosarcoma xenograft model (ED50 = 9.1 mg/kg).


Journal of Medicinal Chemistry | 2013

Rational Design and Binding Mode Duality of MDM2–p53 Inhibitors

Felix Gonzalez-Lopez de Turiso; Daqing Sun; Yosup Rew; Michael D. Bartberger; Hilary P. Beck; Jude Canon; Ada Chen; David Chow; Tiffany L. Correll; Xin Huang; Lisa Julian; Frank Kayser; Mei-Chu Lo; Alexander M. Long; Dustin L. McMinn; Jonathan D. Oliner; Tao Osgood; Jay P. Powers; Anne Y. Saiki; Steve Schneider; Paul Shaffer; Shou-Hua Xiao; Peter Yakowec; Xuelei Yan; Qiuping Ye; Dongyin Yu; Xiaoning Zhao; Jing Zhou; Julio C. Medina; Steven H. Olson

Structural analysis of both the MDM2-p53 protein-protein interaction and several small molecules bound to MDM2 led to the design and synthesis of tetrasubstituted morpholinone 10, an MDM2 inhibitor with a biochemical IC50 of 1.0 μM. The cocrystal structure of 10 with MDM2 inspired two independent optimization strategies and resulted in the discovery of morpholinones 16 and 27 possessing distinct binding modes. Both analogues were potent MDM2 inhibitors in biochemical and cellular assays, and morpholinone 27 (IC50 = 0.10 μM) also displayed suitable PK profile for in vivo animal experiments. A pharmacodynamic (PD) experiment in mice implanted with human SJSA-1 tumors showed p21(WAF1) mRNA induction (2.7-fold over vehicle) upon oral dosing of 27 at 300 mg/kg.


Journal of Medicinal Chemistry | 2014

Selective and potent morpholinone inhibitors of the MDM2-p53 protein-protein interaction.

Ana Z. Gonzalez; John Eksterowicz; Michael D. Bartberger; Hilary P. Beck; Jude Canon; Ada Chen; David Chow; Jason Duquette; Brian M. Fox; Jiasheng Fu; Xin Huang; Jonathan B. Houze; Lixia Jin; Yihong Li; Zhihong Li; Yun Ling; Mei-Chu Lo; Alexander M. Long; Lawrence R. McGee; Joel McIntosh; Dustin L. McMinn; Jonathan D. Oliner; Tao Osgood; Yosup Rew; Anne Y. Saiki; Paul Shaffer; Sarah Wortman; Peter Yakowec; Xuelei Yan; Qiuping Ye

We previously reported the discovery of AMG 232, a highly potent and selective piperidinone inhibitor of the MDM2-p53 interaction. Our continued search for potent and diverse analogues led to the discovery of novel morpholinone MDM2 inhibitors. This change to a morpholinone core has a significant impact on both potency and metabolic stability compared to the piperidinone series. Within this morpholinone series, AM-8735 emerged as an inhibitor with remarkable biochemical potency (HTRF IC50 = 0.4 nM) and cellular potency (SJSA-1 EdU IC50 = 25 nM), as well as pharmacokinetic properties. Compound 4 also shows excellent antitumor activity in the SJSA-1 osteosarcoma xenograft model with an ED50 of 41 mg/kg. Lead optimization toward the discovery of this inhibitor as well as key differences between the morpholinone and the piperidinone series will be described herein.


Journal of Medicinal Chemistry | 2014

Novel Inhibitors of the MDM2-p53 Interaction Featuring Hydrogen Bond Acceptors as Carboxylic Acid Isosteres.

Ana Z. Gonzalez; Zhihong Li; Hilary P. Beck; Jude Canon; Ada Chen; David Chow; Jason Duquette; John Eksterowicz; Brian M. Fox; Jiasheng Fu; Xin Huang; Jonathan B. Houze; Lixia Jin; Yihong Li; Yun Ling; Mei-Chu Lo; Alexander M. Long; Lawrence R. McGee; Joel McIntosh; Jonathan D. Oliner; Tao Osgood; Yosup Rew; Anne Y. Saiki; Paul Shaffer; Sarah Wortman; Peter Yakowec; Xuelei Yan; Qiuping Ye; Dongyin Yu; Xiaoning Zhao

We previously reported the discovery of potent and selective morpholinone and piperidinone inhibitors of the MDM2-p53 interaction. These inhibitors have in common a carboxylic acid moiety that engages in an electrostatic interaction with MDM2-His96. Our continued search for potent and diverse inhibitors led to the discovery of novel replacements for these acids uncovering new interactions with the MDM2 protein. In particular, using pyridine or thiazole as isosteres of the carboxylic acid moiety resulted in very potent analogues. From these, AM-6761 (4) emerged as a potent inhibitor with remarkable biochemical (HTRF IC50 = 0.1 nM) and cellular potency (SJSA-1 EdU IC50 = 16 nM), as well as favorable pharmacokinetic properties. Compound 4 also shows excellent antitumor activity in the SJSA-1 osteosarcoma xenograft model with an ED50 of 11 mg/kg. Optimization efforts toward the discovery of these inhibitors as well as the new interactions observed with the MDM2 protein are described herein.


Bioorganic & Medicinal Chemistry Letters | 2011

Improvement of the synthesis and pharmacokinetic properties of chromenotriazolopyrimidine MDM2-p53 protein-protein inhibitors

Hilary P. Beck; Michael DeGraffenreid; Brian M. Fox; John G. Allen; Yosup Rew; Stephen Schneider; Anne Y. Saiki; Dongyin Yu; Jonathan D. Oliner; Kevin Salyers; Qiuping Ye; Steven H. Olson

Human murine double minute 2 (MDM2) is a negative regulator of p53, which plays an important role in cell cycle and apoptosis. We report several optimizations to the synthesis of the chromenotriazolopyrimidine series of MDM2-p53 protein-protein interaction inhibitors. Additionally, the in vitro and in vivo stability, pharmacokinetic properties and solubility were improved through N-substitution.


Molecular Cancer Therapeutics | 2015

The MDM2 Inhibitor AMG 232 Demonstrates Robust Antitumor Efficacy and Potentiates the Activity of p53-Inducing Cytotoxic Agents

Jude Canon; Tao Osgood; Steven H. Olson; Anne Y. Saiki; Rebecca Robertson; Dongyin Yu; John Eksterowicz; Qiuping Ye; Lixia Jin; Ada Chen; Jing Zhou; David Cordover; Stephen Kaufman; Richard Kendall; Jonathan D. Oliner; Angela Coxon; Robert Radinsky

p53 is a critical tumor suppressor and is the most frequently inactivated gene in human cancer. Inhibition of the interaction of p53 with its negative regulator MDM2 represents a promising clinical strategy to treat p53 wild-type tumors. AMG 232 is a potential best-in-class inhibitor of the MDM2–p53 interaction and is currently in clinical trials. We characterized the activity of AMG 232 and its effect on p53 signaling in several preclinical tumor models. AMG 232 binds the MDM2 protein with picomolar affinity and robustly induces p53 activity, leading to cell-cycle arrest and inhibition of tumor cell proliferation. AMG 232 treatment inhibited the in vivo growth of several tumor xenografts and led to complete and durable regression of MDM2-amplified SJSA-1 tumors via growth arrest and induction of apoptosis. Therapeutic combination studies of AMG 232 with chemotherapies that induce DNA damage and p53 activity resulted in significantly superior antitumor efficacy and regression, and markedly increased activation of p53 signaling in tumors. These preclinical data support the further evaluation of AMG 232 in clinical trials as both a monotherapy and in combination with standard-of-care cytotoxics. Mol Cancer Ther; 14(3); 649–58. ©2015 AACR.

Collaboration


Dive into the Jonathan D. Oliner's collaboration.

Researchain Logo
Decentralizing Knowledge