Jonathan E. Mangum
University of Melbourne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jonathan E. Mangum.
Journal of Dental Research | 2010
Jonathan E. Mangum; Felicity Crombie; Nicky Kilpatrick; David J. Manton; Michael J. Hubbard
Growing interest in the treatment and prevention of Molar/Incisor Hypomineralization (MIH) warrants investigation into the protein composition of hypomineralized enamel. Hypothesizing abnormality akin to amelogenesis imperfecta, we profiled proteins in hypomineralized enamel from human permanent first molars using a biochemical approach. Hypomineralized enamel was found to have from 3- to 15-fold higher protein content than normal, but a near-normal level of residual amelogenins. This distinguished MIH from hypomaturation defects with high residual amelogenins (amelogenesis imperfecta, fluorosis) and so typified it as a hypocalcification defect. Second, hypomineralized enamel was found to have accumulated various proteins from oral fluid and blood, with differential incorporation depending on integrity of the enamel surface. Pathogenically, these results point to a pre-eruptive disturbance of mineralization involving albumin and, in cases with post-eruptive breakdown, subsequent protein adsorption on the exposed hydroxyapatite matrix. These insights into the pathogenesis and properties of hypomineralized enamel hold significance for prevention and treatment of MIH.
Journal of Proteome Research | 2008
Steven D. Shnyder; Jonathan E. Mangum; Michael J. Hubbard
The biomedical need for streamlined approaches to monitor proteome dynamics is growing rapidly. This study examined the ability of a knowledge-based triplex-profiling strategy (i.e., three functionally distinct chaperones, ERp29/PDI/BiP) to clarify uncertainties about how cancer affects the endoplasmic reticulum (ER) proteome. Investigating a wide range of samples at the tissue and cellular levels (>114 samples from 9 tissues of origin), we obtained consistent evidence that the ER proteome undergoes a major but variable expansion in cancer. Three factors having a strong influence on the ER proteome were identified (cancer-cell type, growth rate, culture mode), and the functionally enigmatic chaperone ERp29 was linked distinctively to histogenetic aspects of tumorigenesis. These findings justify pursuit of the ER-proteome as a medical target in cancer, validate ERp29/PDI/BiP profiling as a streamlined yet powerful measure of ER-proteome dynamics, and suggest that biomarker sets based on distinct functionalities could have broader biomedical utility.
Biochemical Journal | 2004
Michael J. Hubbard; Jonathan E. Mangum; Nicola J. McHugh
ERp29 is a recently characterized resident of the ER (endoplasmic reticulum) lumen that has broad biological significance, being expressed ubiquitously and abundantly in animal cells. As an apparent housekeeper, ERp29 is thought to be a general folding assistant for secretory proteins and to probably function as a PDI (protein disulphide isomerase)-like molecular chaperone. In the present paper, we report the first purification to homogeneity and direct functional analysis of native ERp29, which has led to the unexpected finding that ERp29 lacks PDI-like folding activities. ERp29 was purified 4800-fold in non-denaturing conditions exploiting an unusual affinity for heparin. Two additional biochemical hallmarks that will assist the classification of ERp29 homologues were identified, namely the idiosyncratic behaviours of ERp29 on size-exclusion chromatography (M(r)monomeric mass). In contrast with PDI and parallel-purified co-residents (calreticulin, ERp60), native ERp29 lacked classical chaperone, disulphide reductase and isomerase, and calcium-binding activities. In the chaperone assays, ERp29 neither protected substrate proteins against thermal aggregation nor interacted stably with chemically denatured proteins as detected by cross-linking. ERp29 also did not exhibit helper activity toward calreticulin (chaperone) or PDI and ERp60 (disulphide reductase). By refuting long-standing predictions about chaperone activity, these results expose ERp29 as a functionally distinct member of the ER machinery and prompt a revised hypothesis that ERp29 acts as a non-classical folding assistant. The native preparation and biochemical hallmarks established here provide a useful foundation for ongoing efforts to resolve the functional orphan status of ERp29.
Journal of Biological Chemistry | 2004
Chris I. Turnbull; Ken Looi; Jonathan E. Mangum; Michael Meyer; Rod J. Sayer; Michael J. Hubbard
Cytosolic calcium-binding proteins termed calbindins are widely regarded as a key component of the machinery used to transport calcium safely across cells. Acting as mobile buffers, calbindins are thought to ferry calcium in bulk and simultaneously protect against its potentially cytotoxic effects. Here, we contradict this dogma by showing that teeth and bones were produced normally in null mutant mice lacking calbindin28kDa. Structural analysis of dental enamel, the development of which depends critically on active calcium transport, showed that mineralization was unaffected in calbindin28kDa-null mutants. An unchanged rate of calcium transport was verified by measurements of 45Ca incorporation into developing teeth in vivo. In enamel-forming cells, the absence of calbindin28kDa was not compensated by other cytosolic calcium-binding proteins as detectable by 45Ca overlay, two-dimensional gel, and equilibrium binding analyses. Despite a 33% decrease in cytosolic buffer capacity, cytotoxicity was not evident in either the null mutant enamel or its formative cells. This is the first definitive evidence that calbindins are not required for active calcium transport, either as ferries or as facilitative buffers. Moreover, in challenging the broader notion of a cytosolic route for calcium, the findings support an alternative paradigm involving passage via calcium-tolerant organelles.
Frontiers in Physiology | 2017
Michael J. Hubbard; Jonathan E. Mangum; Vidal A. Perez; Garry J. Nervo; Roger K. Hall
Developmental dental defects (DDDs, hereafter “D3s”) hold significance for scientists and practitioners from both medicine and dentistry. Although, attention has classically dwelt on three other D3s (amelogenesis imperfecta, dental fluorosis, and enamel hypoplasia), dental interest has recently swung toward Molar Hypomineralisation (MH), a prevalent condition characterised by well-delineated (“demarcated”) opacities in enamel. MH imposes a significant burden on global health and has potential to become medically preventable, being linked to infantile illness. Yet even in medico-dental research communities there is only narrow awareness of this childhood problem and its link to tooth decay, and of allied research opportunities. Major knowledge gaps exist at population, case and tooth levels and salient information from enamel researchers has sometimes been omitted from clinically-oriented conclusions. From our perspective, a cross-sector translational approach is required to address these complex inadequacies effectively, with the ultimate aim of prevention. Drawing on experience with a translational research network spanning Australia and New Zealand (The D3 Group; www.thed3group.org), we firstly depict MH as a silent public health problem that is generally more concerning than the three classical D3s. Second, we argue that diverse research inputs are needed to undertake a multi-faceted attack on this problem, and outline demarcated opacities as the central research target. Third, we suggest that, given past victories studying other dental conditions, enamel researchers stand to make crucial contributions to the understanding and prevention of MH. Finally, to focus geographically diverse research interests onto this nascent field, further internationalisation of The D3 Group is warranted.
Scientific Reports | 2015
Marianna Volpert; Jonathan E. Mangum; Duangporn Jamsai; Rebecca Jade D'Sylva; Moira K. O'Bryan; Peter McIntyre
While the Cysteine-Rich Secretory Proteins (CRISPs) have been broadly proposed as regulators of reproduction and immunity, physiological roles have yet to be established for individual members of this family. Past efforts to investigate their functions have been limited by the difficulty of purifying correctly folded CRISPs from bacterial expression systems, which yield low quantities of correctly folded protein containing the eight disulfide bonds that define the CRISP family. Here we report the expression and purification of native, glycosylated CRISP3 from human and mouse, expressed in HEK 293 cells and isolated using ion exchange and size exclusion chromatography. Functional authenticity was verified by substrate-affinity, native glycosylation characteristics and quaternary structure (monomer in solution). Validated protein was used in comparative structure/function studies to characterise sites and patterns of N-glycosylation in CRISP3, revealing interesting inter-species differences.
Methods of Molecular Biology | 2010
Jonathan E. Mangum; Jew C. Kon; Michael J. Hubbard
Improved understanding of dental enamel development will benefit not only dentistry but also biomedicine more generally. Rat and mouse models of enamel development are relatively well characterized and experimentally powerful. However, the diminutive size of murine teeth makes them difficult to study using standard proteomic approaches. Here we describe gel-based proteomic methods that enable parallel quantification, identification, and functional characterization of proteins from developing rat and mouse teeth. These refined methods are also likely to be applicable to other scarce samples.
British Journal of Pharmacology | 2018
Steve P.H. Alexander; Richard E. Roberts; Brad R.S. Broughton; Christopher G. Sobey; Christopher H. George; S. Clare Stanford; Giuseppe Cirino; James R. Docherty; Mark A. Giembycz; Daniel Hoyer; Paul A. Insel; Angelo A. Izzo; Yong Ji; David J. MacEwan; Jonathan E. Mangum; Susan Wonnacott; Amrita Ahluwalia
Reproducibility is a current concern for everyone involved in the conduct and publication of biomedical research. Recent attempts testing reproducibility, particularly the reproducibility project in cancer biology published in elife (https://elifesciences.org/collections/9b1e83d1/reproducibility-project-cancer-biology), have exposed major difficulties in repeating published preclinical experimental work. It is thought that some of these difficulties relate to uncertainty about the provenance of tools, lack of clarity in methodology and use of inappropriate approaches for analysis; the latter particularly related to untowardmanipulation of images. In the past, some of these so-called untoward practices were considered the ‘norm’; however, today, the landscape is different. The expectations, not only of the readers of the published scientific word but also of the publishers and funders of research, have changed. This collective group now expects that any published data should be reproducible; but for this to be possible, experimental detail, confirmation of selectivity and quality of reagents/ tools, analytical and statistical methods used need to be described adequately. Two powerful methodologies often used to support researchers’ findings allow the detection of changes in protein expression, that is, immunoblotting (widely known as Western blotting) and immunohistochemistry. Undeniably, as a result of unintentional mistakes (often related to lack of antibody specificity; Baker, 2015), but, in some cases, deliberate alterations and questionable interpretations of results, the use of these two methods has led to many high profile retractions. Indeed, such images have driven the retractions that have occurred in BJP over the last two years. Today, immunoblotting and immunohistochemistry serve as primary methodologies for the detection and quantification of molecular signalling pathways and identification of therapeutic targets. This necessitates clear guidance for the application of these techniques, the need for controls (both positive and negative) and the most appropriate methods for quantification. Indeed, this need has spawned a number of initiatives to support researchers in assessing the validity of antibody resources including antibodypedia (Bjorling and Uhlen, 2008) and the resources available within ‘The Human Protein Atlas’ (Thul et al., 2017). The aim of this article is to outline the rationale for, and the expectations of, the BJP with respect to work published in the Journal that includes immunoblotting or immunohistochemical data. In creating these guidelines, our aim is to reduce potential misinterpretations and to maximise the communication and transparency of essential information, particularly with respect to the methodologies employed. We have generated the guidelines below for the benefit of authors, editors and reviewers. While we recognise other recently published guidelines (Uhlen et al., 2016) and indeed we have incorporated some of the advice provided in such reports, we focus, here, on the evidence required for publication in BJP. These guidelines join a series published in BJP regarding the reporting of animal experiments through BJP British Journal of Pharmacology British Journal of Pharmacology (2018) 175 407–411 407
Biochemical and Biophysical Research Communications | 2018
Vidal A. Perez; Jonathan E. Mangum; Michael J. Hubbard
The protease kallikrein 4 (KLK4) plays a pivotal role during dental enamel formation by degrading the major enamel protein, amelogenin, prior to the final steps of enamel hardening. KLK4 dysfunction is known to cause some types of developmental defect in enamel but the mechanisms responsible for transient retention of KLK4 in semi-hardened enamel matrix remain unclear. To address contradictory reports about the affinity of KLK4 for enamel hydroxyapatite-like mineral, we used pure components in quasi-physiological conditions and found that KLK4 binds hydroxyapatite directly. Hypothesising KLK4 self-destructs once amelogenin is degraded, biochemical analyses revealed that KLK4 progressively lost activity, became aggregated, and autofragmented when incubated without substrate in both the presence and absence of reducer. However, with non-ionic detergent present as proxy substrate, KLK4 remained active and intact throughout. These findings prompt a new mechanistic model and line of enquiry into the role of KLK4 in enamel hardening and malformation.
Proteomics | 2005
Jonathan E. Mangum; Peter G. Farlie; Michael J. Hubbard