Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan F. Lovell is active.

Publication


Featured researches published by Jonathan F. Lovell.


Chemical Reviews | 2010

Activatable Photosensitizers for Imaging and Therapy

Jonathan F. Lovell; Tracy W. Liu; Juan Chen; Gang Zheng

2. Activatable Photosensitizer Design Considerations 2842 2.1. Activation Strategy 2842 2.2. Photosensitizer Selection 2844 2.3. Photosensitizer Conjugation 2845 3. Examples of Activatable Photosensitizers 2845 3.1. Environment-Activated Photosensitizers 2845 3.2. Enzyme-Activated Photosensitizers 2846 3.3. Nucleic Acid-Activated Photosensitizers 2852 3.4. Other Activation Mechanisms 2853 4. Conclusion and Outlook 2855 5. Abbreviations 2855 6. Acknowledgments 2855 7. References 2855


Nature Materials | 2011

Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents

Jonathan F. Lovell; Cheng S. Jin; Elizabeth Huynh; Honglin Jin; Chulhong Kim; John L. Rubinstein; Warren C. W. Chan; Weiguo Cao; Lihong V. Wang; Gang Zheng

Optically active nanomaterials promise to advance a range of biophotonic techniques through nanoscale optical effects and integration of multiple imaging and therapeutic modalities. Here, we report the development of porphysomes; nanovesicles formed from self-assembled porphyrin bilayers that generated large, tunable extinction coefficients, structure-dependent fluorescence self-quenching and unique photothermal and photoacoustic properties. Porphysomes enabled the sensitive visualization of lymphatic systems using photoacoustic tomography. Near-infrared fluorescence generation could be restored on dissociation, creating opportunities for low-background fluorescence imaging. As a result of their organic nature, porphysomes were enzymatically biodegradable and induced minimal acute toxicity in mice with intravenous doses of 1,000 mg kg(-1). In a similar manner to liposomes, the large aqueous core of porphysomes could be passively or actively loaded. Following systemic administration, porphysomes accumulated in tumours of xenograft-bearing mice and laser irradiation induced photothermal tumour ablation. The optical properties and biocompatibility of porphysomes demonstrate the multimodal potential of organic nanoparticles for biophotonic imaging and therapy.


Cell | 2008

Membrane Binding by tBid Initiates an Ordered Series of Events Culminating in Membrane Permeabilization by Bax

Jonathan F. Lovell; Lieven P. Billen; Scott Bindner; Aisha Shamas-Din; Cécile Fradin; Brian Leber; David W. Andrews

In normal circumstances, the Bcl-2 family dutifully governs when cells die. However, the rules of engagement between the pro- and antiapoptotic family members are still contested, and how Bax is transformed from a cytosolic monomer to an outer mitochondrial membrane-permeabilizing oligomer is unclear. With fluorescence techniques and an in vitro system, the combination of tBid and Bax produced dramatic membrane permeabilization. The membrane is not a passive partner in this process beause membranes are required for the protein-protein interactions to occur. Simultaneous measurements of these interactions revealed an ordered series of steps required for outer membrane permeabilization: (1) tBid rapidly binds to membranes, where (2) tBid interacts with Bax, causing (3) Bax insertion into membranes and (4) oligomerization, culminating in (5) membrane permeabilization. Bcl-XL prevents membrane-bound tBid from binding Bax. Bad releases tBid from Bcl-XL, restoring both tBid binding to Bax and membrane permeabilization.


PLOS Biology | 2008

Bcl-XL inhibits membrane permeabilization by competing with Bax.

Lieven P. Billen; Candis L. Kokoski; Jonathan F. Lovell; Brian Leber; David W. Andrews

Although Bcl-XL and Bax are structurally similar, activated Bax forms large oligomers that permeabilize the outer mitochondrial membrane, thereby committing cells to apoptosis, whereas Bcl-XL inhibits this process. Two different models of Bcl-XL function have been proposed. In one, Bcl-XL binds to an activator, thereby preventing Bax activation. In the other, Bcl-XL binds directly to activated Bax. It has been difficult to sort out which interaction is important in cells, as all three proteins are present simultaneously. We examined the mechanism of Bax activation by tBid and its inhibition by Bcl-XL using full-length recombinant proteins and measuring permeabilization of liposomes and mitochondria in vitro. Our results demonstrate that Bcl-XL and Bax are functionally similar. Neither protein bound to membranes alone. However, the addition of tBid recruited molar excesses of either protein to membranes, indicating that tBid activates both pro- and antiapoptotic members of the Bcl-2 family. Bcl-XL competes with Bax for the activation of soluble, monomeric Bax through interaction with membranes, tBid, or t-Bid-activated Bax, thereby inhibiting Bax binding to membranes, oligomerization, and membrane permeabilization. Experiments in which individual interactions were abolished by mutagenesis indicate that both Bcl-XL–tBid and Bcl-XL–Bax binding contribute to the antiapoptotic function of Bcl-XL. By out-competing Bax for the interactions leading to membrane permeabilization, Bcl-XL ties up both tBid and Bax in nonproductive interactions and inhibits Bax binding to membranes. We propose that because Bcl-XL does not oligomerize it functions like a dominant-negative Bax in the membrane permeabilization process.


ACS Nano | 2013

Ablation of Hypoxic Tumors with Dose-Equivalent Photothermal, but Not Photodynamic, Therapy Using a Nanostructured Porphyrin Assembly

Cheng S. Jin; Jonathan F. Lovell; Juan Chen; Gang Zheng

Tumor hypoxia is increasingly being recognized as a characteristic feature of solid tumors and significantly complicates many treatments based on radio-, chemo-, and phototherapies. While photodynamic therapy (PDT) is based on photosensitizer interactions with diffused oxygen, photothermal therapy (PTT) has emerged as a new phototherapy that is predicted to be independent of oxygen levels within tumors. It has been challenging to meaningfully compare these two modalities due to differences in contrast agents and irradiation parameters, and no comparative in vivo studies have been performed until now. Here, by making use of recently developed nanostructured self-quenched porphysome nanoparticles, we were able to directly compare PDT and PTT using matched light doses and matched porphyrin photosensitizer doses (with the photosensitizer being effective for either PTT or PDT based on the existence of nanostructure or not). Therefore, we demonstrated the nanostructure-driven conversion from the PDT singlet oxygen generating mechanism of porphyrin to a completely thermal mechanism, ideal for PTT enhancement. Using a novel hypoxia tumor model, we determined that nanostructured porphyrin PTT enhancers are advantageous to overcome hypoxic conditions to achieve effective ablation of solid tumors.


Accounts of Chemical Research | 2011

Lipoprotein-Inspired Nanoparticles for Cancer Theranostics

Kenneth K. Ng; Jonathan F. Lovell; Gang Zheng

Over hundreds of millions of years, animals have evolved endogenous lipoprotein nanoparticles for shuttling hydrophobic molecules to different parts of the body. In the last 70 years, scientists have developed an understanding of lipoprotein function, often in relationship to lipid transport and heart disease. Such biocompatible, lipid–protein complexes are also ideal for loading and delivering cancer therapeutic and diagnostic agents, which means that lipoprotein and lipoprotein-inspired nanoparticles also offer opportunities for cancer theranostics. By mimicking the endogenous shape and structure of lipoproteins, the nanocarrier can remain in circulation for an extended period of time, while largely evading the reticuloendothelial cells in the body’s defenses. The small size (less than 30 nm) of the low-density (LDL) and high-density (HDL) classes of lipoproteins allows them to maneuver deeply into tumors. Furthermore, lipoproteins can be targeted to their endogenous receptors, when those are implicated in cancer, or to other cancer receptors. In this Account, we review the field of lipoprotein-inspired nanoparticles related to the delivery of cancer imaging and therapy agents. LDL has innate cancer targeting potential and has been used to incorporate diverse hydrophobic molecules and deliver them to tumors. Nature’s method of rerouting LDL in atherosclerosis provides a strategy to extend the cancer targeting potential of lipoproteins beyond its narrow purview. Although LDL has shown promise as a drug nanocarrier for cancer imaging and therapy, increasing evidence indicates that HDL, the smallest lipoprotein, may also be of use for drug targeting and uptake into cancer cells. We also discuss how synthetic HDL-like nanoparticles, which do not include human or recombinant proteins, can deliver molecules directly to the cytoplasm of certain cancer cells, effectively bypassing the endosomal compartment. This strategy could allow HDL-like nanoparticles to be used to deliver drugs that have increased activity in the cytoplasm. Lipoprotein nanoparticles have evolved to be ideal delivery vehicles, and because of that specialized function, they have the potential to improve cancer theranostics.


Nature Nanotechnology | 2014

Non-invasive multimodal functional imaging of the intestine with frozen micellar naphthalocyanines

Yumiao Zhang; Mansik Jeon; Laurie J. Rich; Hao Hong; Jumin Geng; Yin Zhang; Sixiang Shi; Todd E. Barnhart; Paschalis Alexandridis; Jan D. Huizinga; Mukund Seshadri; Weibo Cai; Chulhong Kim; Jonathan F. Lovell

Overview There is a need for safer and improved methods for non-invasive imaging of the gastrointestinal tract. Modalities based on X-ray radiation, magnetic resonance and ultrasound suffer from limitations with respect to safety, accessibility or lack of adequate contrast. Functional intestinal imaging of dynamic gut processes has not been practical using existing approaches. Here, we report the development of a family of nanoparticles that can withstand the harsh conditions of the stomach and intestine, avoid systemic absorption, and give rise to good optical contrast for photoacoustic imaging. The hydrophobicity of naphthalocyanine dyes was exploited to generate purified ~20 nm frozen micelles, which we call nanonaps, with tunable and large near-infrared absorption values (>1000). Unlike conventional chromophores, nanonaps exhibited non-shifting spectra at ultrahigh optical densities and, following oral administration in mice, passed safely through the gastrointestinal tract. Non-invasive, non-ionizing photoacoustic techniques were used to visualize nanonap intestinal distribution with low background and remarkable resolution with 0.5 cm depth, and enabled real-time intestinal functional imaging with ultrasound co-registration. Positron emission tomography following seamless nanonap radiolabelling allowed complementary whole body imaging.


Nature Communications | 2014

Porphyrin–phospholipid liposomes permeabilized by near-infrared light

Kevin A. Carter; Shuai Shao; Matthew I. Hoopes; Dandan Luo; Bilal Ahsan; Vladimir M. Grigoryants; Wentao Song; Haoyuan Huang; Guojian Zhang; Ravindra K. Pandey; Jumin Geng; Blaine A. Pfeifer; Charles P. Scholes; Joaquin Ortega; Mikko Karttunen; Jonathan F. Lovell

The delivery of therapeutic compounds to target tissues is a central challenge in treating disease. Externally controlled drug release systems hold potential to selectively enhance localized delivery. Here we describe liposomes doped with porphyrin–phospholipid that are permeabilized directly by near-infrared light. Molecular dynamics simulations identified a novel light-absorbing monomer esterified from clinically approved components predicted and experimentally demonstrated to give rise to a more stable porphyrin bilayer. Light-induced membrane permeabilization is enabled with liposomal inclusion of 10 molar % porphyrin–phospholipid and occurs in the absence of bulk or nanoscale heating. Liposomes reseal following laser exposure and permeability is modulated by varying porphyrin–phospholipid doping, irradiation intensity or irradiation duration. Porphyrin–phospholipid liposomes demonstrate spatial control of release of entrapped gentamicin and temporal control of release of entrapped fluorophores following intratumoral injection. Following systemic administration, laser irradiation enhances deposition of actively loaded doxorubicin in mouse xenografts, enabling an effective single-treatment antitumour therapy.


Cancer Nanotechnology | 2010

Investigating the specific uptake of EGF-conjugated nanoparticles in lung cancer cells using fluorescence imaging.

Honglin Jin; Jonathan F. Lovell; Juan Chen; Kenneth K. Ng; Weiguo Cao; Lili Ding; Zhihong Zhang; Gang Zheng

Targeted nanoparticles have the potential to deliver a large drug payload specifically to cancer cells. Targeting requires that a ligand on the nanoparticle surface interact with a specific membrane receptor on target cells. However, the contribution of the targeting ligand to nanoparticle delivery is often influenced by non-specific nanoparticle uptake or secondary targeting mechanisms. In this study, we investigate the epidermal growth factor (EGF) receptor-targeting specificity of a nanoparticle by dual-color fluorescent labeling. The targeted nanoparticle was a fluorescently labeled, EGF-conjugated HDL-like peptide–phospholipid scaffold (HPPS) and the cell lines expressed EGF receptor linked with green fluorescent protein (EGFR-GFP). Using LDLA7 cells partially expressing EGFR-GFP, fluorescence imaging demonstrated the co-internalization of EGFR-GFP and EGF-HPPS, thus validating its targeting specificity. Furthermore, specific EGFR-mediated uptake of the EGF-HPPS nanoparticle was confirmed using human non-small cell lung cancer A549 cells. Subsequent confocal microscopy and flow cytometry studies delineated how secondary targeting mechanisms affected the EGFR targeting. Together, this study confirms the EGFR targeting of EGF-HPPS in lung cancer cells and provides insight on the potential influence of unintended targets on the desired ligand–receptor interaction.


Advanced Materials | 2015

Hexamodal Imaging with Porphyrin-Phospholipid-Coated Upconversion Nanoparticles

James Rieffel; Feng Chen; Jeesu Kim; Guanying Chen; Wei Shao; Shuai Shao; Upendra Chitgupi; Reinier Hernandez; Stephen A. Graves; Robert J. Nickles; Paras N. Prasad; Chulhong Kim; Weibo Cai; Jonathan F. Lovell

Hexamodal imaging using simple nanoparticles is demonstrated. Porphyrin-phospholipids are used to coat upconversion nanoparticles in order to generate a new biocompatible material. The nanoparticles are characterized in vitro and in vivo for imaging via fluorescence, upconversion, positron emission tomography, computed tomography, Cerenkov luminescence, and photoacoustic tomography.

Collaboration


Dive into the Jonathan F. Lovell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jumin Geng

State University of New York System

View shared research outputs
Top Co-Authors

Avatar

Shuai Shao

State University of New York System

View shared research outputs
Top Co-Authors

Avatar

Kevin A. Carter

State University of New York System

View shared research outputs
Top Co-Authors

Avatar

Upendra Chitgupi

State University of New York System

View shared research outputs
Top Co-Authors

Avatar

Yumiao Zhang

State University of New York System

View shared research outputs
Top Co-Authors

Avatar

Dandan Luo

State University of New York System

View shared research outputs
Top Co-Authors

Avatar

Wentao Song

State University of New York System

View shared research outputs
Top Co-Authors

Avatar

Jun Xia

State University of New York System

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge