Jonathan G. Krum
Utah State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jonathan G. Krum.
Infection and Immunity | 2006
Kit Tilly; Jonathan G. Krum; Aaron Bestor; Mollie W. Jewett; Dorothee Grimm; Dawn M. Bueschel; Rebecca Byram; David W. Dorward; Mark J. VanRaden; Philip S. Stewart; Patricia A. Rosa
ABSTRACT This study demonstrates a strict temporal requirement for a virulence determinant of the Lyme disease spirochete Borrelia burgdorferi during a unique point in its natural infection cycle, which alternates between ticks and small mammals. OspC is a major surface protein produced by B. burgdorferi when infected ticks feed but whose synthesis decreases after transmission to a mammalian host. We have previously shown that spirochetes lacking OspC are competent to replicate in and migrate to the salivary glands of the tick vector but do not infect mice. Here we assessed the timing of the requirement for OspC by using an ospC mutant complemented with an unstable copy of the ospC gene and show that B. burgdorferis requirement for OspC is specific to the mammal and limited to a critical early stage of mammalian infection. By using this unique system, we found that most bacterial reisolates from mice persistently infected with the initially complemented ospC mutant strain no longer carried the wild-type copy of ospC. Such spirochetes were acquired by feeding ticks and migrated to the tick salivary glands during subsequent feeding. Despite normal behavior in ticks, these ospC mutant spirochetes did not infect naive mice. ospC mutant spirochetes from persistently infected mice also failed to infect naive mice by tissue transplantation. We conclude that OspC is indispensable for establishing infection by B. burgdorferi in mammals but is not required at any other point of the mouse-tick infection cycle.
Applied and Environmental Microbiology | 2004
Philip E. Stewart; Jessica Hoff; Elizabeth R. Fischer; Jonathan G. Krum; Patricia A. Rosa
ABSTRACT The spirochete Borrelia burgdorferi is the causative agent of Lyme disease, the leading vector-borne illness in the United States. Many of the genetic factors affecting spirochete morphology and physiology are unknown due to the limited genetic tools available and the large number of open reading frames with unknown functions. By adapting a mariner transposon to function in B. burgdorferi, we have developed a random mutagenesis system that tags the mutated locus for rapid identification. Transposition occurs at saturating levels in B. burgdorferi and appears to be random, targeting both linear and circular replicons. By combining the transposon system with a screen for factors affecting growth rate, mutations were readily identified in genes putatively involved in cell division and chemotaxis and a hypothetical open reading frame involved in outer membrane integrity. The successful adaptation of a mariner transposon to function in B. burgdorferi should aid in identifying virulence factors and novel gene products related to spirochete physiology.
Journal of Bacteriology | 2002
Miriam K. Sluis; Rachel A. Larsen; Jonathan G. Krum; Ruth Anderson; William W. Metcalf; Scott A. Ensign
Acetone carboxylase is the key enzyme of bacterial acetone metabolism, catalyzing the condensation of acetone and CO(2) to form acetoacetate. In this study, the acetone carboxylase of the purple nonsulfur photosynthetic bacterium Rhodobacter capsulatus was purified to homogeneity and compared to that of Xanthobacter autotrophicus strain Py2, the only other organism from which an acetone carboxylase has been purified. The biochemical properties of the enzymes were virtually indistinguishable, with identical subunit compositions (alpha(2)beta(2)gamma(2) multimers of 85-, 78-, and 20-kDa subunits), reaction stoichiometries (CH(3)COCH(3) + CO(2) + ATP-->CH(3)COCH(2)COO(-) + H(+) + AMP + 2P(i)), and kinetic properties (K(m) for acetone, 8 microM; k(cat) = 45 min(-1)). Both enzymes were expressed to high levels (17 to 25% of soluble protein) in cells grown with acetone as the carbon source but were not present at detectable levels in cells grown with other carbon sources. The genes encoding the acetone carboxylase subunits were identified by transposon mutagenesis of X. autotrophicus and sequence analysis of the R. capsulatus genome and were found to be clustered in similar operons consisting of the genes acxA (beta subunit), acxB (alpha subunit), and acxC (gamma subunit). Transposon mutagenesis of X. autotrophicus revealed a requirement of sigma(54) and a sigma(54)-dependent transcriptional activator (AcxR) for acetone-dependent growth and acetone carboxylase gene expression. A potential sigma(54)-dependent promoter 122 bp upstream of X. autotrophicus acxABC was identified. An AcxR gene homolog was identified 127 bp upstream of acxA in R. capsulatus, but this activator lacked key features of sigma(54)-dependent activators, and the associated acxABC lacked an apparent sigma(54)-dependent promoter, suggesting that sigma(54) is not required for expression of acxABC in R. capsulatus. These studies reveal a conserved strategy of ATP-dependent acetone carboxylation and the involvement of transcriptional enhancers in acetone carboxylase gene expression in gram-negative acetone-utilizing bacteria.
Vector-borne and Zoonotic Diseases | 2004
Kit Tilly; Dorothee Grimm; Dawn M. Bueschel; Jonathan G. Krum; Patricia A. Rosa
Chitobiose is the dimer subunit of chitin, a component of tick cuticle and peritrophic matrix, which is not found in mammals. The Borrelia burgdorferi chbC gene is required for the use of chitobiose as a source of the essential nutrient N-acetyl glucosamine during growth in vitro. In order to investigate the role of chitobiose transport in the infectious cycle, we constructed isogenic chbC mutant and wild-type strains in an infectious B. burgdorferi background and confirmed that the mutants were defective in chitobiose utilization. The defect in the mutants was shown to be in chitobiose transport, consistent with the predicted function of the ChbC protein as the membrane component of a phosphotransferase transporter for chitobiose. We then tested whether this locus is also required for any stage of the experimental mouse-tick infectious cycle. We found that both wild-type and mutant bacteria successfully infect both mice and ticks and are transmitted between the two hosts. These results demonstrate that B. burgdorferi growth in vivo is independent of chitobiose transport, even in an environmental niche in which the sugar is likely to be present.
Journal of Bacteriology | 2001
Jonathan G. Krum; Scott A. Ensign
The bacterial metabolism of propylene proceeds by epoxidation to epoxypropane followed by a sequence of three reactions resulting in epoxide ring opening and carboxylation to form acetoacetate. Coenzyme M (2-mercaptoethanesulfonic acid) (CoM) plays a central role in epoxide carboxylation by serving as the nucleophile for epoxide ring opening and the carrier of the C(3) unit that is ultimately carboxylated to acetoacetate, releasing CoM. In the present work, a 320-kb linear megaplasmid has been identified in the gram-negative bacterium Xanthobacter strain Py2, which contains the genes encoding the key enzymes of propylene oxidation and epoxide carboxylation. Repeated subculturing of Xanthobacter strain Py2 under nonselective conditions, i.e., with glucose or acetate as the carbon source in the absence of propylene, resulted in the loss of the propylene-positive phenotype. The propylene-negative phenotype correlated with the loss of the 320-kb linear megaplasmid, loss of induction and expression of alkene monooxgenase and epoxide carboxylation enzyme activities, and the loss of CoM biosynthetic capability. Sequence analysis of a hypothetical protein (XecG), encoded by a gene located downstream of the genes for the four enzymes of epoxide carboxylation, revealed a high degree of sequence identity with proteins of as-yet unassigned functions in the methanogenic archaea Methanobacterium thermoautotrophicum and Methanococcus jannaschii and in Bacillus subtilis. The M. jannaschii homolog of XecG, MJ0255, is located next to a gene, MJ0256, that has been shown to encode a key enzyme of CoM biosynthesis (M. Graupner, H. Xu, and R. H. White, J. Bacteriol. 182: 4862-4867, 2000). We propose that the propylene-positive phenotype of Xanthobacter strain Py2 is dependent on the selective maintenance of a linear megaplasmid containing the genes for the key enzymes of alkene oxidation, epoxide carboxylation, and CoM biosynthesis.
Journal of Bacteriology | 2004
Yngve Östberg; James A. Carroll; Marija Pinne; Jonathan G. Krum; Patricia A. Rosa; Sven Bergström
A gene encoding a putative carboxyl-terminal protease (CtpA), an unusual type of protease, is present in the Borrelia burgdorferi B31 genome. The B. burgdorferi CtpA amino acid sequence exhibits similarities to the sequences of the CtpA enzymes of the cyanobacterium Synechocystis sp. strain PCC 6803 and higher plants and also exhibits similarities to the sequences of putative CtpA proteins in other bacterial species. Here, we studied the effect of ctpA gene inactivation on the B. burgdorferi protein expression profile. Total B. burgdorferi proteins were separated by two-dimensional gel electrophoresis, and the results revealed that six proteins of the wild type were not detected in the ctpA mutant and that nine proteins observed in the ctpA mutant were undetectable in the wild type. Immunoblot analysis showed that the integral outer membrane protein P13 was larger and had a more acidic pI in the ctpA mutant, which is consistent with the theoretical change in pI for P13 not processed at the carboxyl terminus. Matrix-assisted laser desorption ionization-time of flight data indicated that in addition to P13, the BB0323 protein may serve as a substrate for carboxyl-terminal processing by CtpA. Complementation analysis of the ctpA mutant provided strong evidence that the observed effect on proteins depended on inactivation of the ctpA gene alone. We show that CtpA in B. burgdorferi is involved in the processing of proteins such as P13 and BB0323 and that inactivation of ctpA has a pleiotropic effect on borrelial protein synthesis. To our knowledge, this is the first analysis of both a CtpA protease and different substrate proteins in a pathogenic bacterium.
Journal of Bacteriology | 2000
Jonathan G. Krum; Scott A. Ensign
Coenzyme M (CoM) (2-mercaptoethanesulfonic acid) biosynthesis is shown to be coordinately regulated with the expression of the enzymes of alkene and epoxide metabolism in the propylene-oxidizing bacteria Xanthobacter strain Py2 and Rhodococcus rhodochrous strain B276. These results provide the first evidence for the involvement of CoM in propylene metabolism by R. rhodochrous and demonstrate for the first time the inducible nature of eubacterial CoM biosynthesis.
Molecular Microbiology | 2006
Cyril Guyard; James M. Battisti; Sandra J. Raffel; Merry E. Schrumpf; Adeline R. Whitney; Jonathan G. Krum; Stephen F. Porcella; Patricia A. Rosa; Frank R. DeLeo; Tom G. Schwan
The spirochaetes that cause tick‐borne relapsing fever and Lyme disease are closely related human pathogens, yet they differ significantly in their ecology and pathogenicity. Genome sequencing of two species of relapsing fever spirochaetes, Borrelia hermsii and Borrelia turicatae, identified a chromosomal open reading frame, designated bhpA, not present in the Lyme disease spirochaete Borrelia burgdorferi. The predicted amino acid sequence of bhpA was homologous with the HtrA serine proteases, which are involved with stress responses and virulence in other bacteria. B. hermsii produced an active serine protease that was recognized by BhpA antibodies and the recombinant BhpA protein‐degraded β‐casein. bhpA was transcribed in vitro at all growth temperatures and transcription levels were slightly elevated at higher temperatures. These results correlated with the synthesis of BhpA during B. hermsii infection in mice. With the exception of Borrelia recurrentis, the bhpA gene, protein and enzymatic activity were found in all relapsing fever spirochaetes, but not in Lyme disease or related spirochaetes. Heterologous expression of bhpA in B. burgdorferi increased the spirochaetes resistance to both oxidative stress and killing by human neutrophils. Therefore, we propose that bhpA encodes a unique and functional serine protease in relapsing fever spirochaetes. This periplasmic enzyme may prevent the accumulation of proteins damaged by the innate immune response and contribute to the ability of the relapsing fever spirochaetes to achieve high cell densities in blood.
Proceedings of the National Academy of Sciences of the United States of America | 2004
Dorothee Grimm; Kit Tilly; Rebecca Byram; Philip E. Stewart; Jonathan G. Krum; Dawn M. Bueschel; Tom G. Schwan; Paul F. Policastro; Abdallah F. Elias; Patricia A. Rosa
Proceedings of the National Academy of Sciences of the United States of America | 1999
Jeffrey R. Allen; Daniel D. Clark; Jonathan G. Krum; Scott A. Ensign