Jonathan G. L. Mullins
Swansea University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jonathan G. L. Mullins.
Journal of Biological Chemistry | 2010
Helen J. Harris; Christopher Davis; Jonathan G. L. Mullins; Ke Hu; Margaret Goodall; Michelle J. Farquhar; Christopher J. Mee; Kitty McCaffrey; Stephen Young; Heidi E. Drummer; Peter Balfe; Jane A. McKeating
Viruses initiate infection by attaching to molecules or receptors at the cell surface. Hepatitis C virus (HCV) enters cells via a multistep process involving tetraspanin CD81, scavenger receptor class B member I, and the tight junction proteins Claudin-1 and Occludin. CD81 and scavenger receptor class B member I interact with HCV-encoded glycoproteins, suggesting an initial role in mediating virus attachment. In contrast, there are minimal data supporting Claudin-1 association with HCV particles, raising questions as to its role in the virus internalization process. In the present study we demonstrate a relationship between receptor active Claudins and their association and organization with CD81 at the plasma membrane by fluorescence resonance energy transfer and stoichiometric imaging methodologies. Mutation of residues 32 and 48 in the Claudin-1 first extracellular loop ablates CD81 association and HCV receptor activity. Furthermore, mutation of the same residues in the receptor-inactive Claudin-7 molecule enabled CD81 complex formation and virus entry, demonstrating an essential role for Claudin-CD81 complexes in HCV infection. Importantly, Claudin-1 associated with CD81 at the basolateral membrane of polarized HepG2 cells, whereas tight junction-associated pools of Claudin-1 demonstrated a minimal association with CD81. In summary, we demonstrate an essential role for Claudin-CD81 complexes in HCV infection and their localization at the basolateral surface of polarized hepatoma cells, consistent with virus entry into the liver via the sinusoidal blood and association with basal expressed forms of the receptors.
Molecular Microbiology | 2000
Gavin H. Thomas; Jonathan G. L. Mullins; Mike Merrick
The Mep/Amt proteins constitute a new family of transport proteins that are ubiquitous in nature. Members from bacteria, yeast and plants have been identified experimentally as high‐affinity ammonium transporters. We have determined the topology of AmtB, a Mep/Amt protein from Escherichia coli, as a representative protein for the complete family. This was established using a minimal set of AmtB–PhoA fusion proteins with a complementary set of AmtB–LacZ fusions. These data, accompanied by an in silico analysis, indicate that the majority of the Mep/Amt proteins contain 11 membrane‐spanning helices, with the N‐terminus on the exterior face of the membrane and the C‐terminus on the interior. A small subset, including E. coli AmtB, probably have an additional twelfth membrane‐spanning region at the N‐terminus. Addition of PhoA or LacZ α‐peptide to the C‐terminus of E. coli AmtB resulted in complete loss of transport activity, as judged by measurements of [14C]‐methylammonium uptake. This C‐terminal region, along with four membrane‐spanning helices, contains multiple residues that are conserved within the Mep/Amt protein family. Structural modelling of the E. coli AmtB protein suggests a number of secondary structural features that might contribute to function, including a putative ammonium binding site on the periplasmic face of the membrane at residue Asp‐182. The implications of these results are discussed in relation to the structure and function of the related human Rhesus proteins.
The Journal of Neuroscience | 2010
Seo-Kyung Chung; Jean-François Vanbellinghen; Jonathan G. L. Mullins; Angela Robinson; Janina Hantke; C. L. Hammond; Daniel F. Gilbert; Michael Freilinger; Monique M. Ryan; Michael C. Kruer; Amira Masri; Candan Gürses; Colin D. Ferrie; Kirsten Harvey; Rita Shiang; John Christodoulou; Frederick Andermann; Eva Andermann; Rhys Huw Thomas; Robert J. Harvey; Joseph W. Lynch; Mark I. Rees
Hyperekplexia is a rare, but potentially fatal, neuromotor disorder characterized by exaggerated startle reflexes and hypertonia in response to sudden, unexpected auditory or tactile stimuli. This disorder is primarily caused by inherited mutations in the genes encoding the glycine receptor (GlyR) α1 subunit (GLRA1) and the presynaptic glycine transporter GlyT2 (SLC6A5). In this study, systematic DNA sequencing of GLRA1 in 88 new unrelated human hyperekplexia patients revealed 19 sequence variants in 30 index cases, of which 21 cases were inherited in recessive or compound heterozygote modes. This indicates that recessive hyperekplexia is far more prevalent than previous estimates. From the 19 GLRA1 sequence variants, we have investigated the functional effects of 11 novel and 2 recurrent mutations. The expression levels and functional properties of these hyperekplexia mutants were analyzed using a high-content imaging system and patch-clamp electrophysiology. When expressed in HEK293 cells, either as homomeric α1 or heteromeric α1β GlyRs, subcellular localization defects were the major mechanism underlying recessive mutations. However, mutants without trafficking defects typically showed alterations in the glycine sensitivity suggestive of disrupted receptor function. This study also reports the first hyperekplexia mutation associated with a GlyR leak conductance, suggesting tonic channel opening as a new mechanism in neuronal ligand-gated ion channels.
Fungal Genetics and Biology | 2009
Jennifer R. Wortman; Jane Mabey Gilsenan; Vinita Joardar; Jennifer Deegan; John Clutterbuck; Mikael Rørdam Andersen; David B. Archer; Mojca Benčina; Gerhard Braus; Pedro M. Coutinho; Hans von Döhren; John H. Doonan; Arnold J. M. Driessen; Pawel Durek; Eduardo A. Espeso; Erzsébet Fekete; Michel Flipphi; Carlos Garcia Estrada; Steven Geysens; Gustavo H. Goldman; Piet W.J. de Groot; Kim Hansen; Steven D. Harris; Thorsten Heinekamp; Kerstin Helmstaedt; Bernard Henrissat; Gerald Hofmann; Tim Homan; Tetsuya Horio; Hiroyuki Horiuchi
The identification and annotation of protein-coding genes is one of the primary goals of whole-genome sequencing projects, and the accuracy of predicting the primary protein products of gene expression is vital to the interpretation of the available data and the design of downstream functional applications. Nevertheless, the comprehensive annotation of eukaryotic genomes remains a considerable challenge. Many genomes submitted to public databases, including those of major model organisms, contain significant numbers of wrong and incomplete gene predictions. We present a community-based reannotation of the Aspergillus nidulans genome with the primary goal of increasing the number and quality of protein functional assignments through the careful review of experts in the field of fungal biology.
Applied and Environmental Microbiology | 2011
Hans J. Cools; Jonathan G. L. Mullins; B. A. Fraaije; Josie E. Parker; Diane E. Kelly; J. A. Lucas; Steven L. Kelly
ABSTRACT The progressive decline in the effectiveness of some azole fungicides in controlling Mycosphaerella graminicola, causal agent of the damaging Septoria leaf blotch disease of wheat, has been correlated with the selection and spread in the pathogen population of specific mutations in the M. graminicola CYP51 (MgCYP51) gene encoding the azole target sterol 14α-demethylase. Recent studies have suggested that the emergence of novel MgCYP51 variants, often harboring substitution S524T, has contributed to a decrease in the efficacy of prothioconazole and epoxiconazole, the two currently most effective azole fungicides against M. graminicola. In this study, we establish which amino acid alterations in novel MgCYP51 variants have the greatest impact on azole sensitivity and protein function. We introduced individual and combinations of identified alterations by site-directed mutagenesis and functionally determined their impact on azole sensitivity by expression in a Saccharomyces cerevisiae mutant YUG37::erg11 carrying a regulatable promoter controlling native CYP51 expression. We demonstrate that substitution S524T confers decreased sensitivity to all azoles when introduced alone or in combination with Y461S. In addition, S524T restores the function in S. cerevisiae of MgCYP51 variants carrying the otherwise lethal alterations Y137F and V136A. Sensitivity tests of S. cerevisiae transformants expressing recently emerged MgCYP51 variants carrying combinations of alterations D134G, V136A, Y461S, and S524T reveal a substantial impact on sensitivity to the currently most widely used azoles, including epoxiconazole and prothioconazole. Finally, we exploit a recently developed model of the MgCYP51 protein to predict that the substantial structural changes caused by these novel combinations reduce azole interactions with critical residues in the binding cavity, thereby causing resistance.
Journal of Virology | 2009
David C. Lamb; Li Lei; Andrew G. S. Warrilow; Galina I. Lepesheva; Jonathan G. L. Mullins; Michael R. Waterman; Steven L. Kelly
ABSTRACT The genome sequence of the giant virus Acanthamoeba polyphaga mimivirus revealed the presence of two putative cytochrome P450 (CYP) genes. The product of one of the two predicted CYP genes (YP_143162) showed low-level homology to sterol 14-demethylase (CYP51) and contained a C-terminal polypeptide domain of unknown function. YP_143162 expression (without an N-terminal membrane binding domain) in Escherichia coli yields a CYP protein which gives a reduced CO difference maximum at 448 nm and was formally demonstrated as the first viral cytochrome P450. Analysis of binding of lipid and sterol substrates indicated no perturbation in CYP heme environment, and an absence of activity was seen when 14-methyl sterols were used as a substrate. The function of the CYP protein and its C-terminal domain remain unknown.
Fungal Genetics and Biology | 2009
Diane E. Kelly; Nada Kraševec; Jonathan G. L. Mullins; David R. Nelson
The cytochromes P450 (CYPs) are found in all biological kingdoms and genome sequencing projects continue to reveal an ever increasing number. The principle aim of this paper is to identify the complete CYPome of Aspergillus nidulans from the genome sequence version AN.3 deposited at the Broad institute, assign the appropriate CYP nomenclature and define function where possible. The completed analysis revealed a total of 111 CYP genes, 3 of which were previously unknown and 8 pseudogenes, representing 89CYP families, 21 of which are unique. We have identified 28 potential gene clusters associated with one or more CYP genes and discussed those with putative PKS and NRPS associated function. The chromosomal location of the genes, predicted cellular location of the proteins and possible function(s) are discussed.
PLOS ONE | 2011
Jonathan G. L. Mullins; Josie E. Parker; Hans J. Cools; Roberto C. Togawa; J. A. Lucas; B. A. Fraaije; Diane E. Kelly; Steven L. Kelly
A structural rationale for recent emergence of azole (imidazole and triazole) resistance associated with CYP51 mutations in the wheat pathogen Mycosphaerella graminicola is presented, attained by homology modelling of the wild type protein and 13 variant proteins. The novel molecular models of M. graminicola CYP51 are based on multiple homologues, individually identified for each variant, rather than using a single structural scaffold, providing a robust structure-function rationale for the binding of azoles, including important fungal specific regions for which no structural information is available. The wild type binding pocket reveals specific residues in close proximity to the bound azole molecules that are subject to alteration in the variants. This implicates azole ligands as important agents exerting selection on specific regions bordering the pocket, that become the focus of genetic mutation events, leading to reduced sensitivity to that group of related compounds. Collectively, the models account for several observed functional effects of specific alterations, including loss of triadimenol sensitivity in the Y137F variant, lower sensitivity to tebuconazole of I381V variants and increased resistance to prochloraz of V136A variants. Deletion of Y459 and G460, which brings about removal of that entire section of beta turn from the vicinity of the binding pocket, confers resistance to tebuconazole and epoxiconazole, but sensitivity to prochloraz in variants carrying a combination of A379G I381V ΔY459/G460. Measurements of binding pocket volume proved useful in assessment of scope for general resistance to azoles by virtue of their accommodation without bonding interaction, particularly when combined with analysis of change in positions of key amino acids. It is possible to predict the likely binding orientation of an azole molecule in any of the variant CYPs, providing potential for an in silico screening system and reliable predictive approach to assess the probability of particular variants exhibiting resistance to particular azole fungicides.
Archives of Virology | 2001
M. J. Adams; John F. Antoniw; Jonathan G. L. Mullins
Summary. Computer analysis of published sequence data has consistently identified two complementary transmembrane domains in the coat protein readthrough domains of benyviruses, furoviruses and pomoviruses and in the P2 proteins of bymoviruses. These viruses differ in genome organisation but are all transmitted by plasmodiophorid fungi. The second domain is absent or disrupted in naturally-occurring deletion mutants that cannot be fungally-transmitted. In a non-transmissible substitution mutant of Beet necrotic yellow vein virus [Tamada et al. (1996) J Gen Virol 77: 1359–1367], the alignment of the helices is disrupted. From conserved patterns detected in transmembrane helix sequences and calculated relative helix tilts, structural arrangements consistent with tight packing of transmembrane helices were identified. These included ridge/groove arrangements between the two helices and strong electrostatic associations at the interfacial regions of the membrane. The data strongly suggest that these transmembrane helices facilitate the movement of virus particles across the fungal membrane.
Frontiers in Molecular Neuroscience | 2010
Jeffrey S. Davies; Seo-Kyung Chung; Rhys Huw Thomas; Angela Robinson; C. L. Hammond; Jonathan G. L. Mullins; Eloise Carta; Brian R. Pearce; Kirsten Harvey; Robert J. Harvey; Mark I. Rees
Human startle disease, also known as hyperekplexia (OMIM 149400), is a paroxysmal neurological disorder caused by defects in glycinergic neurotransmission. Hyperekplexia is characterised by an exaggerated startle reflex in response to tactile or acoustic stimuli which first presents as neonatal hypertonia, followed in some with episodes of life-threatening infantile apnoea. Genetic screening studies have demonstrated that hyperekplexia is genetically heterogeneous with several missense and nonsense mutations in the postsynaptic glycine receptor (GlyR) α1 subunit gene (GLRA1) as the primary cause. More recently, missense, nonsense and frameshift mutations have also been identified in the glycine transporter GlyT2 gene, SLC6A5, demonstrating a presynaptic component to this disease. Further mutations, albeit rare, have been identified in the genes encoding the GlyR β subunit (GLRB), collybistin (ARHGEF9) and gephyrin (GPHN) – all of which are postsynaptic proteins involved in orchestrating glycinergic neurotransmission. In this review, we describe the clinical ascertainment aspects, phenotypic considerations and the downstream molecular genetic tools utilised to analyse both presynaptic and postsynaptic components of this heterogeneous human neurological disorder. Moreover, we will describe how the ancient startle response is the preserve of glycinergic neurotransmission and how animal models and human hyperekplexia patients have provided synergistic evidence that implicates this inhibitory system in the control of startle reflexes.