Jonathan G. Lundgren
North Central College
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jonathan G. Lundgren.
PLOS ONE | 2008
L. LaReesa Wolfenbarger; Steven E. Naranjo; Jonathan G. Lundgren; Royce J. Bitzer; Lidia S. Watrud
Background Uncertainty persists over the environmental effects of genetically-engineered crops that produce the insecticidal Cry proteins of Bacillus thuringiensis (Bt). We performed meta-analyses on a modified public database to synthesize current knowledge about the effects of Bt cotton, maize and potato on the abundance and interactions of arthropod non-target functional guilds. Methodology/Principal Findings We compared the abundance of predators, parasitoids, omnivores, detritivores and herbivores under scenarios in which neither, only the non-Bt crops, or both Bt and non-Bt crops received insecticide treatments. Predators were less abundant in Bt cotton compared to unsprayed non-Bt controls. As expected, fewer specialist parasitoids of the target pest occurred in Bt maize fields compared to unsprayed non-Bt controls, but no significant reduction was detected for other parasitoids. Numbers of predators and herbivores were higher in Bt crops compared to sprayed non-Bt controls, and type of insecticide influenced the magnitude of the difference. Omnivores and detritivores were more abundant in insecticide-treated controls and for the latter guild this was associated with reductions of their predators in sprayed non-Bt maize. No differences in abundance were found when both Bt and non-Bt crops were sprayed. Predator-to-prey ratios were unchanged by either Bt crops or the use of insecticides; ratios were higher in Bt maize relative to the sprayed non-Bt control. Conclusions/Significance Overall, we find no uniform effects of Bt cotton, maize and potato on the functional guilds of non-target arthropods. Use of and type of insecticides influenced the magnitude and direction of effects; insecticde effects were much larger than those of Bt crops. These meta-analyses underscore the importance of using controls not only to isolate the effects of a Bt crop per se but also to reflect the replacement of existing agricultural practices. Results will provide researchers with information to design more robust experiments and will inform the decisions of diverse stakeholders regarding the safety of transgenic insecticidal crops.
Microbial Ecology | 2009
R. Michael Lehman; Jonathan G. Lundgren; Lynn M. Petzke
Ground beetles such as Poecilus chalcites (Coleoptera: Carabidae) are beneficial insects in agricultural systems where they contribute to the control of insect and weed pests. We assessed the complexity of bacterial communities occurring in the digestive tracts of field-collected P. chalcites using terminal restriction fragment length polymorphism analyses of polymerase chain reaction-amplified 16S rRNA genes. Bacterial identification was performed by the construction of 16S rRNA gene clone libraries and sequence analysis. Intestinal bacteria in field-collected beetles were then compared to those from groups of beetles that were reared in the lab on an artificial diet with and without antibiotics. Direct cell counts estimated 1.5 × 108 bacteria per milliliter of gut. The digestive tract of field-collected P. chalcites produced an average of 4.8 terminal restriction fragments (tRF) for each beetle. The most abundant clones were affiliated with the genus Lactobacillus, followed by the taxa Enterobacteriaceae, Clostridia, and Bacteriodetes. The majority of the sequences recovered were closely related to those reported from other insect gastrointestinal tracts. Lab-reared beetles produced fewer tRF, an average of 3.1 per beetle, and a reduced number of taxa with a higher number of clones from the family Enterobacteriaceae compared to the field-collected beetles. Antibiotic treatment significantly (p < 0.05) reduced the number of tRF per beetle and selected for a less diverse set of bacterial taxa. We conclude that the digestive tract of P. chalcites is colonized by a simple community of bacteria that possess autochthonous characteristics. Laboratory-reared beetles harbored the most common bacteria found in field-collected beetles, and these bacterial communities may be manipulated in the laboratory with the addition of antibiotics to the diet to allow study of functional roles.
Molecular Ecology | 2014
Eric Lombaert; Thomas Guillemaud; Jonathan G. Lundgren; Robert L. Koch; Benoit Facon; Audrey A. Grez; Antoon Loomans; Thibaut Malausa; Oldrich Nedved; Emma Rhule; Arnstein Staverlokk; Tove Steenberg; Arnaud Estoup
Inferences about introduction histories of invasive species remain challenging because of the stochastic demographic processes involved. Approximate Bayesian computation (ABC) can help to overcome these problems, but such method requires a prior understanding of population structure over the study area, necessitating the use of alternative methods and an intense sampling design. In this study, we made inferences about the worldwide invasion history of the ladybird Harmonia axyridis by various population genetics statistical methods, using a large set of sampling sites distributed over most of the species’ native and invaded areas. We evaluated the complementarity of the statistical methods and the consequences of using different sets of site samples for ABC inferences. We found that the H. axyridis invasion has involved two bridgehead invasive populations in North America, which have served as the source populations for at least six independent introductions into other continents. We also identified several situations of genetic admixture between differentiated sources. Our results highlight the importance of coupling ABC methods with more traditional statistical approaches. We found that the choice of site samples could affect the conclusions of ABC analyses comparing possible scenarios. Approaches involving independent ABC analyses on several sample sets constitute a sensible solution, complementary to standard quality controls based on the analysis of pseudo‐observed data sets, to minimize erroneous conclusions. This study provides biologists without expertise in this area with detailed methodological and conceptual guidelines for making inferences about invasion routes when dealing with a large number of sampling sites and complex population genetic structures.
Arthropod-plant Interactions | 2007
Jonathan G. Lundgren; Kurt A. Rosentrater
The influence of seed structure and strength on their destruction by granivores is central to understanding the dynamics of granivore-plant interactions. For up to nine seed species, the effects of seed size (cm3), mass (mg), density (mg/cm3) and coat strength (MPa) on the damage inflicted by three post-dispersal granivores (Harpalus pensylvanicus, Anisodactylus sanctaecrucis, and Gryllus pennsylvanicus) were evaluated. Seed destruction rates by G. pennsylvanicus were statistically unrelated to the size and toughness of the seeds. Seed densities significantly affected their destruction by A. sanctaecrucis and H. pensylvanicus, as did seed size, mass, and strength in H. pensylvanicus under choice conditions. The carabid beetles destroyed more of the small, denser seeds with stronger seed coats. The results show that different granivores are able to distinguish the structural strength and physical density of seeds as well as seed size. The relative ability of granivores to detect these seed characteristics offers a way in which diverse communities of post-dispersal insect granivores can persist within a single habitat. The authors redefine how the strength of biological structures should be evaluated in ecological studies, using guidelines commonplace in the field of engineering.
Euphytica | 2007
Louis S. Hesler; Kenton E. Dashiell; Jonathan G. Lundgren
The soybean aphid, Aphis glycines Matsumura, is a pest of soybean [Glycine max L. (Merrill)] in Asia, and its recent establishment in North America has led to large, recurring outbreaks that have challenged pest management practitioners there to seek environmentally responsible means for its control. Growth-chamber experiments were conducted to determine and characterize host-plant resistance among several soybean accessions. Soybean plants were first screened for resistance by rating the population growth of A. glycines in two tests. All plants of PI 230977 and 25% of PI 71506 plants were resistant (≤100 aphids per plant) in the first screening test. All ‘Dowling’, PI 71506 and PI 230977 were resistant (≤150 aphids per plant), and 50% of plants of line ‘G93-9223’ were resistant in the second test. Follow-up experiments showed that antixenosis was a modality of resistance based on reduced nymphiposition by A. glycines on Dowling, PI 230977 and PI 71506 in no-choice tests and on fewer numbers of A. glycines on Dowling, PI 230977, PI 71506 and G93-5223 in distribution tests. Antixenosis in Dowling and PI 230977 was stronger in the unifoliolate leaves than in other shoot structures, whereas distribution of A. glycines within plants of PI 71506 and G93-5223 suggested comparable suitability between unifoliolate leaves and other shoot structures of these accessions. Antibiosis to A. glycines was evident as a lower proportion of aphids that reproduced on PI 230977 and from fewer progeny on PI 230977 and Dowling than on 91B91. The number of days from birth to reproduction by A. glycines did not differ among accessions. Results confirmed Dowling and PI 71506 as strong sources of resistance to A. glycines. The levels of antixenosis and antibiosis to A. glycines in PI 230977 and antixenosis to A. glycines in G93-9223 suggest that these accessions may also be valuable to soybean breeding programs as sources of resistance.
Annals of The Entomological Society of America | 2007
Jonathan G. Lundgren; R. Michael Lehman; Joanne C. Chee-Sanford
Abstract We identified the bacterial communities within the alimentary tracts of two granivorous ground beetles as a first step in the exploration of bacteria–ground beetle symbioses. Terminal-restriction fragment length polymorphism analyses of bacterial rRNA extracted from the guts of field-collected individuals of Harpalus pensylvanicus (DeGeer) and Anisodactylus sanctaecrucis (F.) (Coleoptera: Carabidae) revealed that gut-associated bacterial communities were of low diversity. Individuals from the same beetle species possessed similar bacterial community profiles, but the two species exhibited unique profiles. Bacterial 16S rRNA clone libraries constructed for the two beetle species showed that H. pensylvanicus had a more diverse community (six operational taxonomic units [OTUs]) compared with A. sanctaecrucis (three OTUs). Only one OTU, closely related to Hafnia alvei, was common between the two beetle species. Cloned partial 16S rRNA sequences for each OTU were most closely matched to the following cultivated bacteria: Serratia sp., Burkholderia fungorum, and H. alvei and Phenylbacterium sp., Caedibacter sp., Spiroplasma sp., Enterobacter strain B-14, and Weissella viridescens, representing the divisions Alpha-, Beta- and Gammaproteobacteria, Mollicutes, and Bacilli. Some, but not all of these organisms have been previously associated with insects. The identification of bacteria uniquely and consistently associated with these ground beetles provides the basis for further investigation of species-specific functional roles.
Environmental Entomology | 2010
Jonathan G. Lundgren; Janet K. Fergen
ABSTRACT The effects of an autumn-planted, spring-killed, grass cover crop (Elymus trachycaulus [Link] Gould ex Shinners) on populations of Diabrotica virgifera virgifera LeConte and its predator community were evaluated in South Dakota maize fields over two seasons. Abundance and size of D. virgifera larvae and adults and sex ratio of adults were measured in maize produced under two treatments (i.e., a winter cover crop or bare soil), as were maize root damage and the abundance and diversity of the predator communities collected on the soil surface and in the soil column. First and second instars and adults of D. virgifera were similarly abundant in the two treatments, but third instars were significantly fewer in maize planted after a winter cover crop. Larvae developed at different rates in the two treatments, and second instars were significantly smaller (head capsule width and body length) in the maize planted after a cover crop. First and third instars and adults were of similar size in the two treatments, and adult sex ratios were also similar. Although initially similar, predator populations increased steadily in the cover-cropped maize, which led to a significantly greater predator population by the time D. virgifera pupated. There was significantly less root damage in the cover-cropped maize. Predator communities were similarly diverse in both treatments. Predator abundance per plot was significantly and negatively correlated with the abundance of third instars per plot. Clearly, winter cover crops reduce D. virgifera performance and their damage to the crop, and we suspect that this reduction is caused by both environmental effects of the treatment on D. virgifera size and development, and of increased predation on the third instars of the pest. Additional data on the impact of cover crops on actual predation levels, grain yield and quality, and farmer profitability, and correlations among pest performance, crop characteristics, and predator populations and behaviors are key components of this system that remain to be addressed.
Journal of Insect Physiology | 2010
Jonathan G. Lundgren; Donald C. Weber
Prey and non-prey foods differ substantially in their suitability for zoophytophagous omnivores, but the relative quality of these foods depends on the stage-specific digestive capabilities of the organism in question. Quantitative (or real-time) PCR was used to amplify food-specific DNA and measure consumption rates and digestion efficiencies of four foods - two prey (Aphis glycines and Leptinotarsa decemlineata eggs) and two non-prey (Zea mays pollen and the yeast Saccharomyces cerevisiae) species - over different larval stages of Coleomegilla maculata. The amount of Z. mays pollen consumed increased as larvae aged, but not proportionately with larval size, such that consumption rates decreased uniformly with insect age. While aging larvae fed A. glycines had a similar pattern in their diminishing consumption rates, they consumed similar amounts of A. glycines regardless of age, suggesting a negative feedback mechanism for consumption of this species of aphids. Older larvae digested three of the four foods significantly more efficiently than younger larvae, the exception being larvae fed A. glycines which was digested at a similar rate throughout the larval stage. There was a significant effect of time on food quantity detected for all four species of food. We conclude that C. maculata expands its physiological capacity for digesting prey and non-prey foods as they age in order to better accommodate the increased nutritional needs of the older larvae. This strategy has important implications for the life history strategies of zoophytophagous insects and how they function within foods webs.
Journal of Arachnology | 2011
Julie A. Peterson; Jonathan G. Lundgren; James D. Harwood
Abstract Genetically modified crops expressing insecticidal proteins from Bacillus thuringiensis (Bt) have dramatically increased in acreage since their introduction in the mid-1990s. Although the insecticidal mechanisms of Bt target specific pests, concerns persist regarding direct and indirect effects on non-target organisms. In the field, spiders may be exposed to Bt toxins via multiple routes, including phytophagy and pollenivory, consumption of Bt-containing prey, and soil exudates in the detrital food web. Beyond direct toxicity, Bt crops may also have indirect impacts, including pleiotropic and prey-mediated effects. Here, we comprehensively review the literature and use meta-analyses to reveal that foliar spider abundance is unaffected by Bt corn and eggplant, while cotton and rice revealed minor negative effects and there were positive effects from potato. Moreover, the soil-dwelling community of spiders was unaffected by Bt corn and cotton, while positively impacted in potato. However, Bt crops had higher populations of both foliar and epigeal spiders than insecticide-treated non-Bt crops. The current risk-assessment literature has several caveats that could limit interpretations of the data, including lack of taxonomic resolution and sampling methods that bias the results in favor of certain spiders. These families responded differently to Bt crops, and spider responses to insecticides are species- and toxin-specific, thus highlighting the need for greater taxonomic resolution. Bt crops have become a prominent, and increasingly dominant, part of the agricultural landscape; understanding their interactions with spiders, a diverse and integral component of agroecosystems, is therefore essential.
Biocontrol Science and Technology | 2009
Jonathan G. Lundgren; Sharon Nichols; Deirdre A. Prischmann; Michael M. Ellsbury
Abstract The diel and seasonal activity of epigeal predators associated with pre-imaginal Diabrotica virgifera was described. Due to its duration, the egg stage was exposed to more predators than the larval stage. Most predators were easily categorized into day- and night-active guilds. Seasonal and diel niche partitioning may contribute to the maintenance of this diverse and abundant predator community.