Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan Hinton is active.

Publication


Featured researches published by Jonathan Hinton.


Nature | 2012

The landscape of cancer genes and mutational processes in breast cancer

Philip Stephens; Patrick Tarpey; Helen Davies; Peter Van Loo; Christopher Greenman; David C. Wedge; Serena Nik-Zainal; Sancha Martin; Ignacio Varela; Graham R. Bignell; Lucy R. Yates; Elli Papaemmanuil; David Beare; Adam Butler; Angela Cheverton; John Gamble; Jonathan Hinton; Mingming Jia; Alagu Jayakumar; David Jones; Calli Latimer; King Wai Lau; Stuart McLaren; David J. McBride; Andrew Menzies; Laura Mudie; Keiran Raine; Roland Rad; Michael Spencer Chapman; Jon W. Teague

All cancers carry somatic mutations in their genomes. A subset, known as driver mutations, confer clonal selective advantage on cancer cells and are causally implicated in oncogenesis, and the remainder are passenger mutations. The driver mutations and mutational processes operative in breast cancer have not yet been comprehensively explored. Here we examine the genomes of 100 tumours for somatic copy number changes and mutations in the coding exons of protein-coding genes. The number of somatic mutations varied markedly between individual tumours. We found strong correlations between mutation number, age at which cancer was diagnosed and cancer histological grade, and observed multiple mutational signatures, including one present in about ten per cent of tumours characterized by numerous mutations of cytosine at TpC dinucleotides. Driver mutations were identified in several new cancer genes including AKT2, ARID1B, CASP8, CDKN1B, MAP3K1, MAP3K13, NCOR1, SMARCD1 and TBX3. Among the 100 tumours, we found driver mutations in at least 40 cancer genes and 73 different combinations of mutated cancer genes. The results highlight the substantial genetic diversity underlying this common disease.


The New England Journal of Medicine | 2013

Somatic CALR Mutations in Myeloproliferative Neoplasms with Nonmutated JAK2

Jyoti Nangalia; Gunes Gundem; Edward Avezov; Jingjin Li; Karoline Kollmann; Athar Aziz; Jonathan Hinton; Inigo Martincorena; P. Van Loo; Paola Guglielmelli; Patrick Tarpey; Keiran Raine; Stuart McLaren; M. Bianchi; Yvonne Silber; D. Dimitropoulou; David Bloxham; Laura Mudie; Mark Maddison; Ben Robinson; Clodagh Keohane; Cathy MacLean; Katherine L. Hill; Kim H. Orchard; Sudhir Tauro; Mel Greaves; David G. Bowen; David Ron; Elli Papaemmanuil

BACKGROUND Somatic mutations in the Janus kinase 2 gene (JAK2) occur in many myeloproliferative neoplasms, but the molecular pathogenesis of myeloproliferative neoplasms with nonmutated JAK2 is obscure, and the diagnosis of these neoplasms remains a challenge. METHODS We performed exome sequencing of samples obtained from 151 patients with myeloproliferative neoplasms. The mutation status of the gene encoding calreticulin (CALR) was assessed in an additional 1345 hematologic cancers, 1517 other cancers, and 550 controls. We established phylogenetic trees using hematopoietic colonies. We assessed calreticulin subcellular localization using immunofluorescence and flow cytometry. RESULTS Exome sequencing identified 1498 mutations in 151 patients, with medians of 6.5, 6.5, and 13.0 mutations per patient in samples of polycythemia vera, essential thrombocythemia, and myelofibrosis, respectively. Somatic CALR mutations were found in 70 to 84% of samples of myeloproliferative neoplasms with nonmutated JAK2, in 8% of myelodysplasia samples, in occasional samples of other myeloid cancers, and in none of the other cancers. A total of 148 CALR mutations were identified with 19 distinct variants. Mutations were located in exon 9 and generated a +1 base-pair frameshift, which would result in a mutant protein with a novel C-terminal. Mutant calreticulin was observed in the endoplasmic reticulum without increased cell-surface or Golgi accumulation. Patients with myeloproliferative neoplasms carrying CALR mutations presented with higher platelet counts and lower hemoglobin levels than patients with mutated JAK2. Mutation of CALR was detected in hematopoietic stem and progenitor cells. Clonal analyses showed CALR mutations in the earliest phylogenetic node, a finding consistent with its role as an initiating mutation in some patients. CONCLUSIONS Somatic mutations in the endoplasmic reticulum chaperone CALR were found in a majority of patients with myeloproliferative neoplasms with nonmutated JAK2. (Funded by the Kay Kendall Leukaemia Fund and others.).


Cell | 2012

Mutational processes molding the genomes of 21 breast cancers.

Serena Nik-Zainal; Ludmil B. Alexandrov; David C. Wedge; Peter Van Loo; Christopher Greenman; Keiran Raine; David Jones; Jonathan Hinton; John D Marshall; Lucy Stebbings; Andrew Menzies; Sancha Martin; Kenric Leung; Lina Chen; Catherine Leroy; Manasa Ramakrishna; Richard Rance; King Wai Lau; Laura Mudie; Ignacio Varela; David J. McBride; Graham R. Bignell; Susanna L. Cooke; Adam Shlien; John Gamble; Ian Whitmore; Mark Maddison; Patrick Tarpey; Helen Davies; Elli Papaemmanuil

Summary All cancers carry somatic mutations. The patterns of mutation in cancer genomes reflect the DNA damage and repair processes to which cancer cells and their precursors have been exposed. To explore these mechanisms further, we generated catalogs of somatic mutation from 21 breast cancers and applied mathematical methods to extract mutational signatures of the underlying processes. Multiple distinct single- and double-nucleotide substitution signatures were discernible. Cancers with BRCA1 or BRCA2 mutations exhibited a characteristic combination of substitution mutation signatures and a distinctive profile of deletions. Complex relationships between somatic mutation prevalence and transcription were detected. A remarkable phenomenon of localized hypermutation, termed “kataegis,” was observed. Regions of kataegis differed between cancers but usually colocalized with somatic rearrangements. Base substitutions in these regions were almost exclusively of cytosine at TpC dinucleotides. The mechanisms underlying most of these mutational signatures are unknown. However, a role for the APOBEC family of cytidine deaminases is proposed. PaperClip


Cell | 2012

The Life History of 21 Breast Cancers

Serena Nik-Zainal; Peter Van Loo; David C. Wedge; Ludmil B. Alexandrov; Christopher Greenman; King Wai Lau; Keiran Raine; David Jones; John Marshall; Manasa Ramakrishna; Adam Shlien; Susanna L. Cooke; Jonathan Hinton; Andrew Menzies; Lucy Stebbings; Catherine Leroy; Mingming Jia; Richard Rance; Laura Mudie; Stephen Gamble; Philip Stephens; Stuart McLaren; Patrick Tarpey; Elli Papaemmanuil; Helen Davies; Ignacio Varela; David J. McBride; Graham R. Bignell; Kenric Leung; Adam Butler

Summary Cancer evolves dynamically as clonal expansions supersede one another driven by shifting selective pressures, mutational processes, and disrupted cancer genes. These processes mark the genome, such that a cancers life history is encrypted in the somatic mutations present. We developed algorithms to decipher this narrative and applied them to 21 breast cancers. Mutational processes evolve across a cancers lifespan, with many emerging late but contributing extensive genetic variation. Subclonal diversification is prominent, and most mutations are found in just a fraction of tumor cells. Every tumor has a dominant subclonal lineage, representing more than 50% of tumor cells. Minimal expansion of these subclones occurs until many hundreds to thousands of mutations have accumulated, implying the existence of long-lived, quiescent cell lineages capable of substantial proliferation upon acquisition of enabling genomic changes. Expansion of the dominant subclone to an appreciable mass may therefore represent the final rate-limiting step in a breast cancers development, triggering diagnosis. PaperClip


Nature Genetics | 2009

Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer

Gijs van Haaften; Gillian L. Dalgliesh; Helen Davies; Lina Chen; Graham R. Bignell; Christopher Greenman; Sarah Edkins; Claire Hardy; Sarah O'Meara; Jon Teague; Adam Butler; Jonathan Hinton; Calli Latimer; Jenny Andrews; Syd Barthorpe; Dave Beare; Gemma Buck; Peter J. Campbell; Jennifer Cole; Simon A. Forbes; Mingming Jia; David Jones; Chai Yin Kok; Catherine Leroy; Meng-Lay Lin; David J. McBride; Mark Maddison; Simon Maquire; Kirsten McLay; Andrew Menzies

Somatically acquired epigenetic changes are present in many cancers. Epigenetic regulation is maintained via post-translational modifications of core histones. Here, we describe inactivating somatic mutations in the histone lysine demethylase gene UTX, pointing to histone H3 lysine methylation deregulation in multiple tumor types. UTX reintroduction into cancer cells with inactivating UTX mutations resulted in slowing of proliferation and marked transcriptional changes. These data identify UTX as a new human cancer gene.


Nature Communications | 2014

Heterogeneity of genomic evolution and mutational profiles in multiple myeloma

Niccolo Bolli; Hervé Avet-Loiseau; David C. Wedge; Peter Van Loo; Ludmil B. Alexandrov; Inigo Martincorena; Kevin J. Dawson; Francesco Iorio; Serena Nik-Zainal; Graham R. Bignell; Jonathan Hinton; Yilong Li; Jose M. C. Tubio; Stuart McLaren; Sarah O’Meara; Adam Butler; Jon Teague; Laura Mudie; Elizabeth Anderson; Naim Rashid; Yu-Tzu Tai; Masood A. Shammas; Adam Sperling; Mariateresa Fulciniti; Paul G. Richardson; Giovanni Parmigiani; Florence Magrangeas; Stephane Minvielle; Philippe Moreau; Michel Attal

Multiple myeloma is an incurable plasma cell malignancy with a complex and incompletely understood molecular pathogenesis. Here we use whole-exome sequencing, copy-number profiling and cytogenetics to analyse 84 myeloma samples. Most cases have a complex subclonal structure and show clusters of subclonal variants, including subclonal driver mutations. Serial sampling reveals diverse patterns of clonal evolution, including linear evolution, differential clonal response and branching evolution. Diverse processes contribute to the mutational repertoire, including kataegis and somatic hypermutation, and their relative contribution changes over time. We find heterogeneity of mutational spectrum across samples, with few recurrent genes. We identify new candidate genes, including truncations of SP140, LTB, ROBO1 and clustered missense mutations in EGR1. The myeloma genome is heterogeneous across the cohort, and exhibits diversity in clonal admixture and in dynamics of evolution, which may impact prognostic stratification, therapeutic approaches and assessment of disease response to treatment.


Molecular Cancer Therapeutics | 2006

Mutation analysis of 24 known cancer genes in the NCI-60 cell line set

Ogechi N. Ikediobi; Helen Davies; Graham R. Bignell; Sarah Edkins; Claire Stevens; Sarah O'Meara; Thomas Santarius; Tim Avis; Syd Barthorpe; Lisa Brackenbury; Gemma Buck; Adam Butler; Jody Clements; Jennifer Cole; Ed Dicks; Simon A. Forbes; Kristian Gray; Kelly Halliday; Rachel Harrison; Katy Hills; Jonathan Hinton; Chris Hunter; Andy Jenkinson; David Jones; Vivienne Kosmidou; Richard Lugg; Andrew Menzies; Tatiana Mironenko; Adrian Parker; Janet Perry

The panel of 60 human cancer cell lines (the NCI-60) assembled by the National Cancer Institute for anticancer drug discovery is a widely used resource. The NCI-60 has been characterized pharmacologically and at the molecular level more extensively than any other set of cell lines. However, no systematic mutation analysis of genes causally implicated in oncogenesis has been reported. This study reports the sequence analysis of 24 known cancer genes in the NCI-60 and an assessment of 4 of the 24 genes for homozygous deletions. One hundred thirty-seven oncogenic mutations were identified in 14 (APC, BRAF, CDKN2, CTNNB1, HRAS, KRAS, NRAS, SMAD4, PIK3CA, PTEN, RB1, STK11, TP53, and VHL) of the 24 genes. All lines have at least one mutation among the cancer genes examined, with most lines (73%) having more than one. Identification of those cancer genes mutated in the NCI-60, in combination with pharmacologic and molecular profiles of the cells, will allow for more informed interpretation of anticancer agent screening and will enhance the use of the NCI-60 cell lines for molecularly targeted screens. [Mol Cancer Ther 2006;5(11):2606–12]


Blood | 2011

Clinical significance of SF3B1 mutations in myelodysplastic syndromes and myelodysplastic/myeloproliferative neoplasms

Luca Malcovati; Elli Papaemmanuil; David T. Bowen; Jacqueline Boultwood; Matteo G. Della Porta; Cristiana Pascutto; Erica Travaglino; Michael J. Groves; Anna L. Godfrey; Ilaria Ambaglio; Anna Gallì; Matteo Da Vià; Simona Conte; Sudhir Tauro; Norene Keenan; Ann Hyslop; Jonathan Hinton; Laura Mudie; James S. Wainscoat; P. Andrew Futreal; Michael R. Stratton; Peter J. Campbell; Eva Hellström-Lindberg; Mario Cazzola

In a previous study, we identified somatic mutations of SF3B1, a gene encoding a core component of RNA splicing machinery, in patients with myelodysplastic syndrome (MDS). Here, we define the clinical significance of these mutations in MDS and myelodysplastic/myeloproliferative neoplasms (MDS/MPN). The coding exons of SF3B1 were screened using massively parallel pyrosequencing in patients with MDS, MDS/MPN, or acute myeloid leukemia (AML) evolving from MDS. Somatic mutations of SF3B1 were found in 150 of 533 (28.1%) patients with MDS, 16 of 83 (19.3%) with MDS/MPN, and 2 of 38 (5.3%) with AML. There was a significant association of SF3B1 mutations with the presence of ring sideroblasts (P < .001) and of mutant allele burden with their proportion (P = .002). The mutant gene had a positive predictive value for ring sideroblasts of 97.7% (95% confidence interval, 93.5%-99.5%). In multivariate analysis including established risk factors, SF3B1 mutations were found to be independently associated with better overall survival (hazard ratio = 0.15, P = .025) and lower risk of evolution into AML (hazard ratio = 0.33, P = .049). The close association between SF3B1 mutations and disease phenotype with ring sideroblasts across MDS and MDS/MPN is consistent with a causal relationship. Furthermore, SF3B1 mutations are independent predictors of favorable clinical outcome, and their incorporation into stratification systems might improve risk assessment in MDS.


Nature Genetics | 2014

RAG-mediated recombination is the predominant driver of oncogenic rearrangement in ETV6-RUNX1 acute lymphoblastic leukemia

Elli Papaemmanuil; Inmaculada Rapado; Yilong Li; Nicola E Potter; David C. Wedge; Jose M. C. Tubio; Ludmil B. Alexandrov; Peter Van Loo; Susanna L. Cooke; John Marshall; Inigo Martincorena; Jonathan Hinton; Gunes Gundem; Frederik W. van Delft; Serena Nik-Zainal; David R. Jones; Manasa Ramakrishna; Ian Titley; Lucy Stebbings; Catherine Leroy; Andrew Menzies; John Gamble; Ben Robinson; Laura Mudie; Keiran Raine; Sarah O'Meara; Jon Teague; Adam Butler; Giovanni Cazzaniga; Andrea Biondi

The ETV6-RUNX1 fusion gene, found in 25% of childhood acute lymphoblastic leukemia (ALL) cases, is acquired in utero but requires additional somatic mutations for overt leukemia. We used exome and low-coverage whole-genome sequencing to characterize secondary events associated with leukemic transformation. RAG-mediated deletions emerge as the dominant mutational process, characterized by recombination signal sequence motifs near breakpoints, incorporation of non-templated sequence at junctions, ∼30-fold enrichment at promoters and enhancers of genes actively transcribed in B cell development and an unexpectedly high ratio of recurrent to non-recurrent structural variants. Single-cell tracking shows that this mechanism is active throughout leukemic evolution, with evidence of localized clustering and reiterated deletions. Integration of data on point mutations and rearrangements identifies ATF7IP and MGA as two new tumor-suppressor genes in ALL. Thus, a remarkably parsimonious mutational process transforms ETV6-RUNX1–positive lymphoblasts, targeting the promoters, enhancers and first exons of genes that normally regulate B cell differentiation.


Journal of Clinical Investigation | 2013

Whole exome sequencing of adenoid cystic carcinoma

Philip Stephens; Helen Davies; Yoshitsugu Mitani; Peter Van Loo; Adam Shlien; Patrick Tarpey; Elli Papaemmanuil; Angela Cheverton; Graham R. Bignell; Adam Butler; John Gamble; Stephen Gamble; Claire Hardy; Jonathan Hinton; Mingming Jia; Alagu Jayakumar; David Jones; Calli Latimer; Stuart McLaren; David J. McBride; Andrew Menzies; Laura Mudie; Mark Maddison; Keiran Raine; Serena Nik-Zainal; Sarah O’Meara; Jon Teague; Ignacio Varela; David C. Wedge; Ian Whitmore

Adenoid cystic carcinoma (ACC) is a rare malignancy that can occur in multiple organ sites and is primarily found in the salivary gland. While the identification of recurrent fusions of the MYB-NFIB genes have begun to shed light on the molecular underpinnings, little else is known about the molecular genetics of this frequently fatal cancer. We have undertaken exome sequencing in a series of 24 ACC to further delineate the genetics of the disease. We identified multiple mutated genes that, combined, implicate chromatin deregulation in half of cases. Further, mutations were identified in known cancer genes, including PIK3CA, ATM, CDKN2A, SF3B1, SUFU, TSC1, and CYLD. Mutations in NOTCH1/2 were identified in 3 cases, and we identify the negative NOTCH signaling regulator, SPEN, as a new cancer gene in ACC with mutations in 5 cases. Finally, the identification of 3 likely activating mutations in the tyrosine kinase receptor FGFR2, analogous to those reported in ovarian and endometrial carcinoma, point to potential therapeutic avenues for a subset of cases.

Collaboration


Dive into the Jonathan Hinton's collaboration.

Top Co-Authors

Avatar

Adam Butler

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Keiran Raine

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

David Jones

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Andrew Menzies

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Laura Mudie

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Serena Nik-Zainal

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Helen Davies

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Stuart McLaren

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Elli Papaemmanuil

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge