Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan J. Gourley is active.

Publication


Featured researches published by Jonathan J. Gourley.


Weather and Forecasting | 2002

Weather Radar Coverage over the Contiguous United States

Robert A. Maddox; Jian Zhang; Jonathan J. Gourley; Kenneth W. Howard

Abstract Terrain and radar beam-elevation data are used to examine the spatial coverage provided by the national operational network of Doppler weather radars. This information is of importance to a wide variety of users, and potential users, of radar data from the national network. Charts generated for radar coverage at 3 and 5 km above mean sea level show that radar surveillance near 700 and 500 hPa is very limited for some portions of the contiguous United States. Radar coverage charts at heights of 1, 2, and 3 km above ground level illustrate the extent of low-level radar data gathered above the actual land surface. These maps indicate how restricted the national radar network coverage is at low levels, which limits the usefulness of the radar data, especially for quantitative precipitation estimation. The analyses also identify several regions of the contiguous United States in which weather phenomena are sampled by many adjacent radars. Thus, these regions are characterized by very comprehensive rad...


Bulletin of the American Meteorological Society | 2014

HyMeX-SOP1: The Field Campaign Dedicated to Heavy Precipitation and Flash Flooding in the Northwestern Mediterranean

Véronique Ducrocq; Isabelle Braud; Silvio Davolio; Rossella Ferretti; Cyrille Flamant; Agustin Jansa; N. Kalthoff; Evelyne Richard; Isabelle Taupier-Letage; Pierre-Alain Ayral; Sophie Belamari; Alexis Berne; Marco Borga; Brice Boudevillain; Olivier Bock; Jean-Luc Boichard; Marie-Noëlle Bouin; Olivier Bousquet; Christophe Bouvier; Jacopo Chiggiato; Domenico Cimini; U. Corsmeier; Laurent Coppola; Philippe Cocquerez; Eric Defer; Julien Delanoë; Paolo Di Girolamo; Alexis Doerenbecher; Philippe Drobinski; Yann Dufournet

The Mediterranean region is frequently affected by heavy precipitation events associated with flash floods, landslides, and mudslides that cause hundreds of millions of euros in damages per year and often, casualties. A major field campaign was devoted to heavy precipitation and flash floods from 5 September to 6 November 2012 within the framework of the 10-year international HyMeX (Hydrological cycle in the Mediterranean Experiment) dedicated to the hydrological cycle and related high-impact events. The 2- month field campaign took place over the Northwestern Mediterranean Sea and its surrounding coastal regions in France, Italy, and Spain. The observation strategy of the field experiment was devised to improve our knowledge on the following key components leading to heavy precipitation and flash flooding in the region: i) the marine atmospheric flows that transport moist and conditionally unstable air towards the coasts; ii) the Mediterranean Sea acting as a moisture and energy source; iii) the dynamics and microphysics of the convective systems producing heavy precipitation; iv) the hydrological processes during flash floods. This article provides the rationale for developing this first HyMeX field experiment and an overview of its design and execution. Highlights of some Intense Observation Periods illustrate the potential of the unique datasets collected for process understanding, model improvement and data assimilation.


Journal of Atmospheric and Oceanic Technology | 2005

Constructing Three-Dimensional Multiple-Radar Reflectivity Mosaics: Examples of Convective Storms and Stratiform Rain Echoes

Jian Zhang; Kenneth W. Howard; Jonathan J. Gourley

Abstract The advent of Internet-2 and effective data compression techniques facilitates the economic transmission of base-level radar data from the Weather Surveillance Radar-1988 Doppler (WSR-88D) network to users in real time. The native radar spherical coordinate system and large volume of data make the radar data processing a nontrivial task, especially when data from several radars are required to produce composite radar products. This paper investigates several approaches to remapping and combining multiple-radar reflectivity fields onto a unified 3D Cartesian grid with high spatial (≤1 km) and temporal (≤5 min) resolutions. The purpose of the study is to find an analysis approach that retains physical characteristics of the raw reflectivity data with minimum smoothing or introduction of analysis artifacts. Moreover, the approach needs to be highly efficient computationally for potential operational applications. The appropriate analysis can provide users with high-resolution reflectivity data that ...


Water Resources Research | 2010

Hydrologic evaluation of Multisatellite Precipitation Analysis standard precipitation products in basins beyond its inclined latitude band: A case study in Laohahe basin, China

Bin Yong; Liliang Ren; Yang Hong; Jiahu Wang; Jonathan J. Gourley; Shanhu Jiang; Xi Chen; Wen Wang

[1] Two standard Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) products, 3B42RT and 3B42V6, were quantitatively evaluated in the Laohahe basin, China, located within the TMPA product latitude band (50°NS) but beyond the inclined TRMM satellite latitude band (36°NS). In general, direct comparison of TMPA rainfall estimates to collocated rain gauges from 2000 to 2005 show that the spatial and temporal rainfall characteristics over the region are well captured by the 3B42V6 estimates. Except for a few months with underestimation, the 3B42RT estimates show unrealistic overestimation nearly year round, which needs to be resolved in future upgrades to the real-time estimation algorithm. Both model-parameter error analysis and hydrologic application suggest that the three-layer Variable Infiltration Capacity (VIC-3L) model cannot tolerate the nonphysical overestimation behavior of 3B42RT through the hydrologic integration processes, and as such the 3B42RT data have almost no hydrologic utility, even at the monthly scale. In contrast, the 3B42V6 data can produce much better hydrologic predictions with reduced error propagation from input to streamflow at both the daily and monthly scales. This study also found the error structures of both RT and V6 have a significant geo-topography-dependent distribution pattern, closely associated with latitude and elevation bands, suggesting current limitations with TRMM-era algorithms at high latitudes and high elevations in general. Looking into the future Global Precipitation Measurement (GPM) era, the Geostationary Infrared (GEO-IR) estimates still have a long-term role in filling the inevitable gaps in microwave coverage, as well as in enabling sub-hourly estimates at typical 4-km grid scales. Thus, this study affirms the call for a real-time systematic bias removal in future upgrades to the IR-based RT algorithm using a simple scaling factor. This correction is based on MW-based monthly rainfall climatologies applied to the combined monthly satellite-gauge research products.


IEEE Transactions on Geoscience and Remote Sensing | 2011

Satellite Remote Sensing and Hydrologic Modeling for Flood Inundation Mapping in Lake Victoria Basin: Implications for Hydrologic Prediction in Ungauged Basins

Sadiq Ibrahim Khan; Yang Hong; Jiahu Wang; Koray K. Yilmaz; Jonathan J. Gourley; Robert F. Adler; G R Brakenridge; Fritz Policelli; Shahid Habib; Daniel E. Irwin

Floods are among the most catastrophic natural disasters around the globe impacting human lives and infrastructure. Implementation of a flood prediction system can potentially help mitigate flood-induced hazards. Such a system typically requires implementation and calibration of a hydrologic model using in situ observations (i.e., rain and stream gauges). Recently, satellite remote sensing data have emerged as a viable alternative or supplement to in situ observations due to their availability over vast ungauged regions. The focus of this study is to integrate the best available satellite products within a distributed hydrologic model to characterize the spatial extent of flooding and associated hazards over sparsely gauged or ungauged basins. We present a methodology based entirely on satellite remote sensing data to set up and calibrate a hydrologic model, simulate the spatial extent of flooding, and evaluate the probability of detecting inundated areas. A raster-based distributed hydrologic model, Coupled Routing and Excess STorage (CREST), was implemented for the Nzoia basin, a subbasin of Lake Victoria in Africa. Moderate Resolution Imaging Spectroradiometer Terra-based and Advanced Spaceborne Thermal Emission and Reflection Radiometer-based flood inundation maps were produced over the region and used to benchmark the distributed hydrologic model simulations of inundation areas. The analysis showed the value of integrating satellite data such as precipitation, land cover type, topography, and other products along with space-based flood inundation extents as inputs to the distributed hydrologic model. We conclude that the quantification of flooding spatial extent through optical sensors can help to calibrate and evaluate hydrologic models and, hence, potentially improve hydrologic prediction and flood management strategies in ungauged catchments.


Bulletin of the American Meteorological Society | 2015

Global View Of Real-Time Trmm Multisatellite Precipitation Analysis: Implications For Its Successor Global Precipitation Measurement Mission

Bin Yong; Die Liu; Jonathan J. Gourley; Yudong Tian; George J. Huffman; Liliang Ren; Yang Hong

AbstractAccurate estimation of high-resolution precipitation on the global scale is extremely challenging. The operational Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) has created over 16 years of high-resolution quantitative precipitation estimation (QPE), and has built the foundation for improved measurements in the upcoming Global Precipitation Measurement (GPM) mission. TMPA is intended to produce the “best effort” estimates of quasi-global precipitation from almost all available satelliteborne precipitation-related sensors by consistently calibrating them with the high-quality measurements from the core instrument platform aboard TRMM. Recently, the TMPA system has been upgraded to version 7 to take advantage of newer and better sources of satellite inputs than version 6, and has attracted a large user base. A key product from TMPA is the near-real-time product (TMPA-RT), as its timeliness is particularly appealing for time-sensitive applications such as flo...


Hydrological Sciences Journal-journal Des Sciences Hydrologiques | 2011

The coupled routing and excess storage (CREST) distributed hydrological model

Jiahu Wang; Yang Hong; Li Li; Jonathan J. Gourley; Sadiq Ibrahim Khan; Koray K. Yilmaz; Robert F. Adler; Frederick Policelli; Shahid Habib; Daniel Irwn; Ashutosh Limaye; Tesfaye Korme; Lawrence Okello

Abstract The Coupled Routing and Excess STorage model (CREST, jointly developed by the University of Oklahoma and NASA SERVIR) is a distributed hydrological model developed to simulate the spatial and temporal variation of land surface, and subsurface water fluxes and storages by cell-to-cell simulation. CRESTs distinguishing characteristics include: (1) distributed rainfall–runoff generation and cell-to-cell routing; (2) coupled runoff generation and routing via three feedback mechanisms; and (3) representation of sub-grid cell variability of soil moisture storage capacity and sub-grid cell routing (via linear reservoirs). The coupling between the runoff generation and routing mechanisms allows detailed and realistic treatment of hydrological variables such as soil moisture. Furthermore, the representation of soil moisture variability and routing processes at the sub-grid scale enables the CREST model to be readily scalable to multi-scale modelling research. This paper presents the model development and demonstrates its applicability for a case study in the Nzoia basin located in Lake Victoria, Africa. Citation Wang, J., Yang, H., Li, L., Gourley, J. J., Sadiq, I. K., Yilmaz, K. K., Adler, R. F., Policelli, F. S., Habib, S., Irwn, D., Limaye, A. S., Korme, T. & Okello, L. (2011) The coupled routing and excess storage (CREST) distributed hydrological model. Hydrol. Sci. J. 56(1), 84–98.


Journal of Atmospheric and Oceanic Technology | 2007

A Fuzzy Logic Algorithm for the Separation of Precipitating from Nonprecipitating Echoes Using Polarimetric Radar Observations

Jonathan J. Gourley; Pierre Tabary; Jacques Parent du Chatelet

Abstract A fuzzy logic algorithm has been developed for the purpose of segregating precipitating from nonprecipitating echoes using polarimetric radar observations at C band. Adequate polarimetric descriptions for each type of scatterer are required for the algorithm to be effective. An observations-based approach is presented in this study to derive membership functions and objectively weight them so that they apply directly to conditions experienced at the radar site and to the radar wavelength. Three case studies are examined and show that the algorithm successfully removes nonprecipitating echoes from rainfall accumulation maps.


Bulletin of the American Meteorological Society | 2009

THE SEVERE HAZARDS ANALYSIS AND VERIFICATION EXPERIMENT

Kiel L. Ortega; Travis M. Smith; Kevin L. Manross; Kevin Scharfenberg; Arthur Witt; Angelyn G. Kolodziej; Jonathan J. Gourley

During the springs and summers of 2006 through 2008, scientists from the National Severe Storms Laboratory and students from the University of Oklahoma have conducted an enhanced severe-storm verification effort. The primary goal for the Severe Hazards Analysis and Verification Experiment (SHAVE) was the remote collection of high spatial and temporal resolution hail, wind (or wind damage), and flash-flooding reports from severe thunderstorms. This dataset has a much higher temporal and spatial resolution than the traditional storm reports collected by the National Weather Service and published in Storm Data (tens of square kilometers and 1–5 min versus thousands of square kilometers and 30–60 min) and also includes reports of nonsevere storms that are not included in Storm Data. The high resolution of the dataset makes it useful for validating high-resolution, gridded warning guidance applications. SHAVE is unique not only for the type of data collected and the resolution of that data but also for how the...


Scientific Reports | 2015

Vegetation Greening and Climate Change Promote Multidecadal Rises of Global Land Evapotranspiration.

Ke Zhang; John S. Kimball; Ramakrishna R. Nemani; Steven W. Running; Yang Hong; Jonathan J. Gourley; Zhongbo Yu

Recent studies showed that anomalous dry conditions and limited moisture supply roughly between 1998 and 2008, especially in the Southern Hemisphere, led to reduced vegetation productivity and ceased growth in land evapotranspiration (ET). However, natural variability of Earth’s climate system can degrade capabilities for identifying climate trends. Here we produced a long-term (1982–2013) remote sensing based land ET record and investigated multidecadal changes in global ET and underlying causes. The ET record shows a significant upward global trend of 0.88 mm yr−2 (P < 0.001) over the 32-year period, mainly driven by vegetation greening (0.018% per year; P < 0.001) and rising atmosphere moisture demand (0.75 mm yr−2; P = 0.016). Our results indicate that reduced ET growth between 1998 and 2008 was an episodic phenomenon, with subsequent recovery of the ET growth rate after 2008. Terrestrial precipitation also shows a positive trend of 0.66 mm yr−2 (P = 0.08) over the same period consistent with expected water cycle intensification, but this trend is lower than coincident increases in evaporative demand and ET, implying a possibility of cumulative water supply constraint to ET. Continuation of these trends will likely exacerbate regional drought-induced disturbances, especially during regional dry climate phases associated with strong El Niño events.

Collaboration


Dive into the Jonathan J. Gourley's collaboration.

Top Co-Authors

Avatar

Yang Hong

University of Oklahoma

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zachary L. Flamig

Cooperative Institute for Mesoscale Meteorological Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jian Zhang

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Qing Cao

University of Oklahoma

View shared research outputs
Top Co-Authors

Avatar

Sheng Chen

University of Oklahoma

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xianwu Xue

University of Oklahoma

View shared research outputs
Researchain Logo
Decentralizing Knowledge