Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan J. Keats is active.

Publication


Featured researches published by Jonathan J. Keats.


Nature | 2011

Initial genome sequencing and analysis of multiple myeloma

Michael Chapman; Michael S. Lawrence; Jonathan J. Keats; Kristian Cibulskis; Carrie Sougnez; Anna C. Schinzel; Christina L. Harview; Jean Philippe Brunet; Gregory J. Ahmann; Mazhar Adli; Kenneth C. Anderson; Kristin Ardlie; Daniel Auclair; Angela Baker; P. Leif Bergsagel; Bradley E. Bernstein; Yotam Drier; Rafael Fonseca; Stacey B. Gabriel; Craig C. Hofmeister; Sundar Jagannath; Andrzej J. Jakubowiak; Amrita Krishnan; Joan Levy; Ted Liefeld; Sagar Lonial; Scott Mahan; Bunmi Mfuko; Stefano Monti; Louise M. Perkins

Multiple myeloma is an incurable malignancy of plasma cells, and its pathogenesis is poorly understood. Here we report the massively parallel sequencing of 38 tumour genomes and their comparison to matched normal DNAs. Several new and unexpected oncogenic mechanisms were suggested by the pattern of somatic mutation across the data set. These include the mutation of genes involved in protein translation (seen in nearly half of the patients), genes involved in histone methylation, and genes involved in blood coagulation. In addition, a broader than anticipated role of NF-κB signalling was indicated by mutations in 11 members of the NF-κB pathway. Of potential immediate clinical relevance, activating mutations of the kinase BRAF were observed in 4% of patients, suggesting the evaluation of BRAF inhibitors in multiple myeloma clinical trials. These results indicate that cancer genome sequencing of large collections of samples will yield new insights into cancer not anticipated by existing knowledge.


Nature Immunology | 2008

Nonredundant and complementary functions of TRAF2 and TRAF3 in a ubiquitination cascade that activates NIK-dependent alternative NF-κB signaling

Sivakumar Vallabhapurapu; Atsushi Matsuzawa; Wei Zhou Zhang; Ping-Hui Tseng; Jonathan J. Keats; Haopeng Wang; Dario A. A. Vignali; P. Leif Bergsagel; Michael Karin

The adaptor and signaling proteins TRAF2, TRAF3, cIAP1 and cIAP2 may inhibit alternative nuclear factor-κB (NF-κB) signaling in resting cells by targeting NF-κB–inducing kinase (NIK) for ubiquitin-dependent degradation, thus preventing processing of the NF-κB2 precursor protein p100 to release p52. However, the respective functions of TRAF2 and TRAF3 in NIK degradation and activation of alternative NF-κB signaling have remained elusive. We now show that CD40 or BAFF receptor activation result in TRAF3 degradation in a cIAP1-cIAP2- and TRAF2-dependent way owing to enhanced cIAP1, cIAP2 TRAF3-directed ubiquitin ligase activity. Receptor-induced activation of cIAP1 and cIAP2 correlated with their K63-linked ubiquitination by TRAF2. Degradation of TRAF3 prevented association of NIK with the cIAP1-cIAP2-TRAF2 ubiquitin ligase complex, which resulted in NIK stabilization and NF-κB2-p100 processing. Constitutive activation of this pathway causes perinatal lethality and lymphoid defects.


Cancer Cell | 2014

Widespread Genetic Heterogeneity in Multiple Myeloma: Implications for Targeted Therapy

Jens Lohr; Petar Stojanov; Scott L. Carter; Peter Cruz-Gordillo; Michael S. Lawrence; Daniel Auclair; Carrie Sougnez; Birgit Knoechel; Joshua Gould; Gordon Saksena; Kristian Cibulskis; Aaron McKenna; Michael Chapman; Ravid Straussman; Joan Levy; Louise M. Perkins; Jonathan J. Keats; Steven E. Schumacher; Mara Rosenberg; Kenneth C. Anderson; Paul G. Richardson; Amrita Krishnan; Sagar Lonial; Jonathan L. Kaufman; David Siegel; David H. Vesole; Vivek Roy; Candido E. Rivera; S. Vincent Rajkumar; Shaji Kumar

We performed massively parallel sequencing of paired tumor/normal samples from 203 multiple myeloma (MM) patients and identified significantly mutated genes and copy number alterations and discovered putative tumor suppressor genes by determining homozygous deletions and loss of heterozygosity. We observed frequent mutations in KRAS (particularly in previously treated patients), NRAS, BRAF, FAM46C, TP53, and DIS3 (particularly in nonhyperdiploid MM). Mutations were often present in subclonal populations, and multiple mutations within the same pathway (e.g., KRAS, NRAS, and BRAF) were observed in the same patient. In vitro modeling predicts only partial treatment efficacy of targeting subclonal mutations, and even growth promotion of nonmutated subclones in some cases. These results emphasize the importance of heterogeneity analysis for treatment decisions.


Blood | 2012

Clonal competition with alternating dominance in multiple myeloma

Jonathan J. Keats; Marta Chesi; Jan B. Egan; Victoria Garbitt; Stephen Palmer; Esteban Braggio; Scott Van Wier; Patrick R. Blackburn; Angela Baker; Angela Dispenzieri; Shaji Kumar; S. Vincent Rajkumar; John D. Carpten; Michael T. Barrett; Rafael Fonseca; A. Keith Stewart; P. Leif Bergsagel

Emerging evidence indicates that tumors can follow several evolutionary paths over a patients disease course. With the use of serial genomic analysis of samples collected at different points during the disease course of 28 patients with multiple myeloma, we found that the genomes of standard-risk patients show few changes over time, whereas those of cytogenetically high-risk patients show significantly more changes over time. The results indicate the existence of 3 temporal tumor types, which can either be genetically stable, linearly evolving, or heterogeneous clonal mixtures with shifting predominant clones. A detailed analysis of one high-risk patient sampled at 7 time points over the entire disease course identified 2 competing subclones that alternate in a back and forth manner for dominance with therapy until one clone underwent a dramatic linear evolution. With the use of the Vk*MYC genetically engineered mouse model of myeloma we modeled this competition between subclones for predominance occurring spontaneously and with therapeutic selection.


Blood | 2012

Whole-genome sequencing of multiple myeloma from diagnosis to plasma cell leukemia reveals genomic initiating events, evolution, and clonal tides

Jan B. Egan; Chang Xin Shi; Waibhav Tembe; Alexis Christoforides; Ahmet Kurdoglu; Shripad Sinari; Sumit Middha; Yan W. Asmann; Jessica Schmidt; Esteban Braggio; Jonathan J. Keats; Rafael Fonseca; P. Leif Bergsagel; David Craig; John D. Carpten; A. Keith Stewart

The longitudinal evolution of a myeloma genome from diagnosis to plasma cell leukemia has not previously been reported. We used whole-genome sequencing (WGS) on 4 purified tumor samples and patient germline DNA drawn over a 5-year period in a t(4;14) multiple myeloma patient. Tumor samples were acquired at diagnosis, first relapse, second relapse, and end-stage secondary plasma cell leukemia (sPCL). In addition to the t(4;14), all tumor time points also shared 10 common single-nucleotide variants (SNVs) on WGS comprising shared initiating events. Interestingly, we observed genomic sequence variants that waxed and waned with time in progressive tumors, suggesting the presence of multiple independent, yet related, clones at diagnosis that rose and fell in dominance. Five newly acquired SNVs, including truncating mutations of RB1 and ZKSCAN3, were observed only in the final sPCL sample suggesting leukemic transformation events. This longitudinal WGS characterization of the natural history of a high-risk myeloma patient demonstrated tumor heterogeneity at diagnosis with shifting dominance of tumor clones over time and has also identified potential mutations contributing to myelomagenesis as well as transformation from myeloma to overt extramedullary disease such as sPCL.


Blood | 2010

Classical and/or alternative NF-κB pathway activation in multiple myeloma

Yulia N. Demchenko; Oleg K. Glebov; Adriana Zingone; Jonathan J. Keats; P. Leif Bergsagel; W. Michael Kuehl

Mutations involving the nuclear factor-kappaB (NF-kappaB) pathway are present in at least 17% of multiple myeloma (MM) tumors and 40% of MM cell lines (MMCLs). These mutations, which are apparent progression events, enable MM tumors to become less dependent on bone marrow signals that activate NF-kappaB. Studies on a panel of 51 MMCLs provide some clarification of the mechanisms through which these mutations act and the significance of classical versus alternative activation of NF-kappaB. First, only one mutation (NFKB2) selectively activates the alternative pathway, whereas several mutations (CYLD, NFKB1, and TACI) selectively activate the classical pathway. However, most mutations affecting NF-kappaB-inducing kinase (NIK) levels (NIK, TRAF2, TRAF3, cIAP1&2, and CD40) activate the alternative but often both pathways. Second, we confirm the critical role of TRAF2 in regulating NIK degradation, whereas TRAF3 enhances but is not essential for cIAP1/2-mediated proteasomal degradation of NIK in MM. Third, using transfection to selectively activate the classical or alternative NF-kappaB pathways, we show virtually identical changes in gene expression in one MMCL, whereas the changes are similar albeit nonidentical in a second MMCL. Our results suggest that MM tumors can achieve increased autonomy from the bone marrow microenvironment by mutations that activate either NF-kappaB pathway.


Cancer Cell | 2013

Xbp1s-Negative Tumor B Cells and Pre-Plasmablasts Mediate Therapeutic Proteasome Inhibitor Resistance in Multiple Myeloma

Chungyee Leung-Hagesteijn; Natalie Erdmann; Grace Cheung; Jonathan J. Keats; A. Keith Stewart; Donna Reece; Kim Chan Chung; Rodger Tiedemann

Proteasome inhibitor (PI) resistance mechanisms in multiple myeloma (MM) remain controversial. We report the existence of a progenitor organization in primary MM that recapitulates maturation stages between B cells and plasma cells and that contributes to clinical PI resistance. Xbp1s(-) tumor B cells and pre-plasmablasts survive therapeutic PI, preventing cure, while maturation arrest of MM before the plasmablast stage enables progressive disease on PI treatment. Mechanistically, suppression of Xbp1s in MM is shown to induce bortezomib resistance via de-commitment to plasma cell maturation and immunoglobulin production, diminishing endoplasmic reticulum (ER) front-loading and cytotoxic susceptibility to PI-induced inhibition of ER-associated degradation. These results reveal the tumor progenitor structure in MM and highlight its role in therapeutic failure.


Cancer Research | 2009

Identification of Copy Number Abnormalities and Inactivating Mutations in Two Negative Regulators of Nuclear Factor-κB Signaling Pathways in Waldenström's Macroglobulinemia

Esteban Braggio; Jonathan J. Keats; Xavier Leleu; Scott Van Wier; Victor H. Jimenez-Zepeda; Riccardo Valdez; Roelandt F.J. Schop; Tammy Price-Troska; Kimberly J. Henderson; Antonio Sacco; Feda Azab; Philip R. Greipp; Morie A. Gertz; Suzanne R. Hayman; S. Vincent Rajkumar; John D. Carpten; Marta Chesi; Michael T. Barrett; A. Keith Stewart; Ahmet Dogan; P. Leif Bergsagel; Irene M. Ghobrial; Rafael Fonseca

Waldenströms macroglobulinemia (WM) is a distinct clinicobiological entity defined as a B-cell neoplasm characterized by a lymphoplasmacytic infiltrate in bone marrow (BM) and IgM paraprotein production. Cytogenetic analyses were historically limited by difficulty in obtaining tumor metaphases, and the genetic basis of the disease remains poorly defined. Here, we performed a comprehensive analysis in 42 WM patients by using a high-resolution, array-based comparative genomic hybridization approach to unravel the genetic mechanisms associated with WM pathogenesis. Overall, 83% of cases have chromosomal abnormalities, with a median of three abnormalities per patient. Gain of 6p was the second most common abnormality (17%), and its presence was always concomitant with 6q loss. A minimal deleted region, including MIRN15A and MIRN16-1, was delineated on 13q14 in 10% of patients. Of interest, we reported biallelic deletions and/or inactivating mutations with uniparental disomy in tumor necrosis factor (TNF) receptor-associated factor 3 and TNFalpha-induced protein 3, two negative regulators of the nuclear factor-kappaB (NF-kappaB) signaling pathway. Furthermore, we confirmed the association between TRAF3 inactivation and increased transcriptional activity of NF-kappaB target genes. Mutational activation of the NF-kappaB pathway, which is normally activated by ligand receptor interactions within the BM microenvironment, highlights its biological importance, and suggests a therapeutic role for inhibitors of NF-kappaB pathway activation in the treatment of WM.


Leukemia | 2014

Promiscuous MYC locus rearrangements hijack enhancers but mostly super-enhancers to dysregulate MYC expression in multiple myeloma.

Maurizio Affer; Martha Chesi; W D Chen; Jonathan J. Keats; Y N Demchenko; K Tamizhmani; Victoria Garbitt; Daniel L. Riggs; Leslie A. Brents; A V Roschke; S. Van Wier; Rafael Fonseca; P L Bergsagel; W M Kuehl

MYC locus rearrangements—often complex combinations of translocations, insertions, deletions and inversions—in multiple myeloma (MM) were thought to be a late progression event, which often did not involve immunoglobulin genes. Yet, germinal center activation of MYC expression has been reported to cause progression to MM in an MGUS (monoclonal gammopathy of undetermined significance)-prone mouse strain. Although previously detected in 16% of MM, we find MYC rearrangements in nearly 50% of MM, including smoldering MM, and they are heterogeneous in some cases. Rearrangements reposition MYC near a limited number of genes associated with conventional enhancers, but mostly with super-enhancers (e.g., IGH, IGL, IGK, NSMCE2, TXNDC5, FAM46C, FOXO3, IGJ, PRDM1). MYC rearrangements are associated with a significant increase of MYC expression that is monoallelic, but MM tumors lacking a rearrangement have biallelic MYC expression at significantly higher levels than in MGUS. We also have shown that germinal center activation of MYC does not cause MM in a mouse strain that rarely develops spontaneous MGUS. It appears that increased MYC expression at the MGUS/MM transition usually is biallelic, but sometimes can be monoallelic if there is an MYC rearrangement. Our data suggest that MYC rearrangements, regardless of when they occur during MM pathogenesis, provide one event that contributes to tumor autonomy.


Blood | 2009

Identification of a potent natural triterpenoid inhibitor of proteosome chymotrypsin-like activity and NF-κB with antimyeloma activity in vitro and in vivo

Rodger Tiedemann; Jessica Schmidt; Jonathan J. Keats; Chang-Xin Shi; Yuan Xiao Zhu; Stephen Palmer; Xinliang Mao; Aaron D. Schimmer; A. Keith Stewart

As multiple myeloma tumors universally dysregulate cyclin D genes we conducted high-throughput chemical library screens for compounds that induce suppression of cyclin D2 promoter transcription. The top-ranked compound was a natural triterpenoid, pristimerin. Strikingly, the early transcriptional response of cells treated with pristimerin closely resembles cellular responses elicited by proteosome inhibitors, with rapid induction of heat shock proteins, activating transcription factor 3 (ATF3), and CHOP. Enzymatic assays and immunoblotting confirm that pristimerin rapidly (< 90 minutes) and specifically inhibits chymotrypsin-like proteosome activity at low concentrations (< 100 nM) and causes accumulation of cellular ubiquitinated proteins. Notably, cytotoxic triterpenoids including pristimerin inhibit NF-kappaB activation via inhibition of IKK alpha or IKK beta, whereas proteosome inhibitors instead suppress NF-kappaB function by impairing degradation of ubiquitinated I kappaB. By inhibiting both IKK and the proteosome, pristimerin causes overt suppression of constitutive NF-kappaB activity in myeloma cells that may mediate its suppression of cyclin D. Multiple myeloma is exquisitely sensitive to proteosome or NF-kappaB pathway inhibition. Consistent with this, pristimerin is potently and selectively lethal to primary myeloma cells (IC(50) < 100 nM), inhibits xenografted plasmacytoma tumors in mice, and is synergistically cytotoxic with bortezomib--providing the rationale for pharmaceutical development of triterpenoid dual-function proteosome/NF-kappaB inhibitors as therapeutics for human multiple myeloma and related malignancies.

Collaboration


Dive into the Jonathan J. Keats's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

John D. Carpten

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Angela Baker

Translational Genomics Research Institute

View shared research outputs
Top Co-Authors

Avatar

Winnie S. Liang

Translational Genomics Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge