Jonathan J. Rutz
National Oceanic and Atmospheric Administration
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jonathan J. Rutz.
Monthly Weather Review | 2014
Jonathan J. Rutz; W. James Steenburgh; F. Martin Ralph
AbstractNarrow corridors of water vapor transport known as atmospheric rivers (ARs) contribute to extreme precipitation and flooding along the West Coast of the United States, but knowledge of their influence over the interior is limited. Here, the authors use Interim European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-Interim) data, Climate Prediction Center (CPC) precipitation analyses, and Snowpack Telemetry (SNOTEL) observations to describe the characteristics of cool-season (November–April) ARs over the western United States. It is shown that AR frequency and duration exhibit a maximum along the Oregon–Washington coast, a strong transition zone upwind (west) of and over the Cascade–Sierra ranges, and a broad minimum that extends from the “high” Sierra south of Lake Tahoe eastward across the central Great Basin and into the deep interior. East of the Cascade–Sierra ranges, AR frequency and duration are largest over the interior northwest, while AR duration is large compared to ...
Climate Dynamics | 2012
Paul W. Staten; Jonathan J. Rutz; Thomas Reichler; Jian Lu
This study describes simulated changes in the general circulation during the twentieth and twenty-first centuries due to a number of individual direct radiative forcings and warming sea surface temperatures, by examining very long time-slice simulations created with an enhanced version of the Geophysical Fluid Dynamics Laboratories Atmospheric Model AM 2.1. We examine the effects of changing stratospheric ozone, greenhouse gas concentrations, and sea surface temperatures individually and in combination over both hemispheres. Data reveal robust poleward shifts in zonal mean circulation features in present-day simulations compared to a pre-industrial control, and in future simulations compared to present-day. We document the seasonality and significance of these shifts, and find that the combined response is well approximated by the sum of the individual responses. Our results suggest that warming sea surface temperatures are the main driver of circulation change over both hemispheres, and we project that the southern hemisphere jet will continue to shift poleward, albeit more slowly during the summer due to expected ozone recovery in the stratosphere.
Monthly Weather Review | 2015
Jonathan J. Rutz; W. James Steenburgh; F. Martin Ralph
AbstractAlthough atmospheric rivers (ARs) typically weaken following landfall, those that penetrate inland can contribute to heavy precipitation and high-impact weather within the interior of western North America. In this paper, the authors examine the evolution of ARs over western North America using trajectories released at 950 and 700 hPa within cool-season ARs along the Pacific coast. These trajectories are classified as coastal decaying, inland penetrating, or interior penetrating based on whether they remain within an AR upon reaching selected transects over western North America. Interior-penetrating AR trajectories most frequently make landfall along the Oregon coast, but the greatest fraction of landfalling AR trajectories that eventually penetrate into the interior within an AR is found along the Baja Peninsula. In contrast, interior-penetrating AR trajectories rarely traverse the southern “high” Sierra. At landfall, interior-penetrating AR trajectories are associated with a more amplified flow...
Geophysical Research Letters | 2017
Alexander Gershunov; Tamara Shulgina; F. Martin Ralph; David A. Lavers; Jonathan J. Rutz
A new method for automatic detection of atmospheric rivers (ARs) is developed and applied to an atmospheric reanalysis, yielding an extensive catalog of ARs land-falling along the west coast of North America during 1948–2017. This catalog provides a large array of variables that can be used to examine AR cases and their climate-scale variability in exceptional detail. The new record of AR activity, as presented, validated and examined here, provides a perspective on the seasonal cycle and the interannual-interdecadal variability of AR activity affecting the hydroclimate of western North America. Importantly, AR intensity does not exactly follow the climatological pattern of AR frequency. Strong links to hydroclimate are demonstrated using a high-resolution precipitation data set. We describe the seasonal progression of AR activity and diagnose linkages with climate variability expressed in Pacific sea surface temperatures, revealing links to Pacific decadal variability, recent regional anomalies, as well as a generally rising trend in land-falling AR activity. The latter trend is consistent with a long-term increase in vapor transport from the warming North Pacific onto the North American continent. The new catalog provides unprecedented opportunities to study the climate-scale behavior and predictability of ARs affecting western North America.
Bulletin of the American Meteorological Society | 2013
Jonathan J. Rutz; Chris V. Gibson
Todays winter weather headlines are based on the meteorological strength of an event with the assumption that stronger events produce larger public impacts. In reality, public impacts involve many factors, such as whether or not snow will accumulate on roads and affect traffic. Along with numerous environmental factors, decisions are further complicated by societal factors (e.g., timing of the commute). The National Weather Service (NWS) Strategic Plan calls for increased emphasis on decision support services (DSS) to our partners, especially during high-impact events. However, determining when events will produce high-impact conditions often remains a challenge. While forecasters should be aware of the relevant societal factors, they also need objective tools capable of integrating over the wide range of environmental factors that intersect in producing high-impact weather. This is particularly true in the case of road surface conditions, where complex interactions between temperature, moisture, and the...
Journal of Hydrometeorology | 2017
Benjamin J. Hatchett; Susan Burak; Jonathan J. Rutz; Nina S. Oakley; Edward H. Bair; Michael L. Kaplan
AbstractThe occurrence of atmospheric rivers (ARs) in association with avalanche fatalities is evaluated in the conterminous western United States between 1998 and 2014 using archived avalanche reports, atmospheric reanalysis products, an existing AR catalog, and weather station observations. AR conditions were present during or preceding 105 unique avalanche incidents resulting in 123 fatalities, thus comprising 31% of western U.S. avalanche fatalities. Coastal snow avalanche climates had the highest percentage of avalanche fatalities coinciding with AR conditions (31%–65%), followed by intermountain (25%–46%) and continental snow avalanche climates (<25%). Ratios of avalanche deaths during AR conditions to total AR days increased with distance from the coast. Frequent heavy to extreme precipitation (85th–99th percentile) during ARs favored critical snowpack loading rates with mean snow water equivalent increases of 46 mm. Results demonstrate that there exists regional consistency between snow avalanche ...
Bulletin of the American Meteorological Society | 2017
F. M. Ralph; Michael D. Dettinger; David A. Lavers; Irina V. Gorodetskaya; Andrew Martin; M. Viale; A. B. White; Nina S. Oakley; Jonathan J. Rutz; J. R. Spackman; H. Wernli; J. Cordeira
California Department of Water Resources Scripps Institution of Oceanographys Center for Western Weather and Water Extremes
Bulletin of the American Meteorological Society | 2017
Jason M. Cordeira; F. Martin Ralph; Andrew Martin; Natalie Gaggini; J. Ryan Spackman; Paul J. Neiman; Jonathan J. Rutz; Roger Pierce
AbstractAtmospheric rivers (ARs) are long and narrow corridors of enhanced vertically integrated water vapor (IWV) and IWV transport (IVT) within the warm sector of extra tropical cyclones that can produce heavy precipitation and flooding in regions of complex terrain, especially along the U.S. West Coast. Several field campaigns have investigated ARs under the CalWater program of field studies. The first field phase of CalWater during 2009–11 increased the number of observations of precipitation and aerosols, among other parameters, across California and sampled ARs in the coastal and near-coastal environment, whereas the second field phase of CalWater during 2014–15 observed the structure and intensity of ARs and aerosols in the coastal and offshore environment over the northeast Pacific. This manuscript highlights the forecasts that were prepared for the CalWater field campaign in 2015, and the development and use of an “AR portal” that was used to inform these forecasts. The AR portal contains archive...
Journal of Hydrometeorology | 2018
Michael D. Dettinger; F. Martin Ralph; Jonathan J. Rutz
AbstractAtmospheric rivers (ARs) come in all intensities, and clear communication of risks posed by individual storms in observations and forecasts can be a challenge. Modest ARs can be characteriz...
Weather and Forecasting | 2017
Wyndam R Lewis; W. James Steenburgh; Trevor I. Alcott; Jonathan J. Rutz
AbstractContemporary operational medium-range ensemble modeling systems produce quantitative precipitation forecasts (QPFs) that provide guidance for weather forecasters, yet lack sufficient resolution to adequately resolve orographic influences on precipitation. In this study, cool-season (October–March) Global Ensemble Forecast System (GEFS) QPFs are verified using daily (24 h) Snow Telemetry (SNOTEL) observations over the western United States, which tend to be located at upper elevations where the orographic enhancement of precipitation is pronounced. Results indicate widespread dry biases, which reflect the infrequent production of larger 24-h precipitation events (≳22.9 mm in Pacific ranges and ≳10.2 mm in the interior ranges) compared with observed. Performance metrics, such as equitable threat score (ETS), hit rate, and false alarm ratio, generally worsen from the coast toward the interior. Probabilistic QPFs exhibit low reliability, and the ensemble spread captures only ~30% of upper-quartile eve...