Jonathan J. Sabbagh
University of Nevada, Las Vegas
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jonathan J. Sabbagh.
Neurobiology of Aging | 2013
Jonathan J. Sabbagh; Jefferson W. Kinney; Jeffrey L. Cummings
Substantial resources and effort have been invested into the development of therapeutic agents for Alzheimers disease (AD) with mixed and limited success. Research into the etiology of AD with animal models mimicking aspects of the disorder has substantially contributed to the advancement of potential therapies. Although these models have shown utility in testing novel therapeutic candidates, large variability still exists in terms of methodology and how the models are utilized. No model has yet predicted a successful disease-modifying therapy for AD. This report reviews several of the widely accepted transgenic and nontransgenic animal models of AD, highlighting the pathological and behavioral characteristics of each. Methodological considerations for conducting preclinical animal research are discussed, such as which behavioral tasks and histological markers may be associated with the greatest insight into therapeutic benefit. An overview of previous and current therapeutic interventions being investigated in AD models is presented, with an emphasis on factors that may have contributed to failure in past clinical trials. Finally, we propose a multitiered approach for investigating candidate therapies for AD that may reduce the likelihood of inappropriate conclusions from models and failed trials in humans.
Behavioural Brain Research | 2012
Monica M. Bolton; Chelcie F. Heaney; Jonathan J. Sabbagh; Andrew S. Murtishaw; Christy M. Magcalas; Jefferson W. Kinney
Alterations in N-methyl-D-aspartate (NMDA) receptor function have been linked to numerous behavioral deficits and neurochemical alterations. Recent investigations have begun to explore the role of NMDA receptor function on principally inhibitory neurons and their role in network function. One of the prevailing models of schizophrenia proposes a reduction in NMDA receptor function on inhibitory interneurons and the resulting disinhibition may give rise to aspects of the disorder. Studies using NMDA receptor antagonists such as PCP and ketamine have induced schizophrenia-like behavioral deficits in animal model systems as well as changes in inhibitory circuits. The current study investigated whether the administration of a subanesthetic dose of ketamine (8 mg/kg subcutaneously), that disrupts sensorimotor gating, also produces impairments in a Pavlovian emotional learning and memory task. We utilized both standard delay and trace cued and contextual fear conditioning (CCF) paradigms to examine if ketamine produces differential effects when the task is more difficult and relies on connectivity between specific brain regions. Rats administered ketamine displayed no significant deficits in cued or contextual fear following the delay conditioning protocol. However, ketamine did produce a significant impairment in the more difficult trace conditioning protocol. Analyses of tissue from the hippocampus and amygdala indicated that the administration of ketamine produced an alteration in GABA receptor protein levels differentially depending on the task. These data indicate that 8 mg/kg of ketamine impairs learning in the more difficult emotional classical conditioning task and may be related to altered signaling in GABAergic systems.
Neuroscience Letters | 2013
Jonathan J. Sabbagh; Andrew S. Murtishaw; Monica M. Bolton; Chelcie F. Heaney; Michael A. Langhardt; Jefferson W. Kinney
The underlying mechanisms of schizophrenia pathogenesis are not well understood. Increasing evidence supports the glutamatergic hypothesis that posits a hypofunction of the N-methyl D-aspartate (NMDA) receptor on specific gamma amino-butyric acid (GABA)-ergic neurons may be responsible for the disorder. Alterations in the GABAergic system have been observed in schizophrenia, most notably a change in the expression of parvalbumin (PV) in the cortex and hippocampus. Several reports also suggest abnormal neuronal migration may play a role in the etiology of schizophrenia. The current study examined the positioning and distribution of PV-positive cells in the hippocampus following chronic treatment with the NMDA receptor antagonist ketamine. A robust increase was found in the number of PV-positive interneurons located outside the stratum oriens (SO), the layer where most of these cells are normally localized, as well as an overall numerical increase in CA3 PV cells. These results suggest ketamine leads to an abnormal distribution of PV-positive cells, which may be indicative of aberrant migratory activity and possibly related to the Morris water maze deficits observed. These findings may also be relevant to alterations observed in schizophrenia populations.
Physiology & Behavior | 2012
Jonathan J. Sabbagh; Chelcie F. Heaney; Monica M. Bolton; Andrew S. Murtishaw; Jefferson W. Kinney
Subanesthetic administration of the NMDA receptor antagonist ketamine has been suggested to have utility in several therapeutic domains; however, its recreational use has exceeded its therapeutic applications. Ketamine has been utilized to investigate NMDA receptor-mediated learning and memory and to model disorders such as schizophrenia. The utility of ketamine in relation to schizophrenia is based on a proposed mechanism of the disorder being associated with reduced NMDA receptor function within a subset of GABAergic neurons. The examination of ketamine with relevance to the above topics has produced valuable data; however, there exists a great deal of variability in the literature regarding dosage and timing of administration to examine ketamine-induced deficits. In the below experiments we sought to identify the minimal subanesthetic dosage and schedule of ketamine administrations that would produce behavioral deficits in multiple tasks with relevance to the above investigations. We evaluated sensorimotor gating as well as spatial learning and memory in the Morris water task utilizing different doses of ketamine. Our data indicate that an 8 mg/kg subcutaneous dose of ketamine was the minimal dose to produce impairments in both sensorimotor gating and spatial learning.
Neurobiology of Disease | 2013
Jonathan J. Sabbagh; Jefferson W. Kinney; Jeffrey L. Cummings
Alzheimers disease (AD) represents an escalating global threat as life expectancy and disease prevalence continue to increase. There is a considerable need for earlier diagnoses to improve clinical outcomes. Fluid biomarkers measured from cerebrospinal fluid (CSF) and blood, or imaging biomarkers have considerable potential to assist in the diagnosis and management of AD. An additional important utility of biomarkers is in novel therapeutic development and clinical trials to assess efficacy and side effects of therapeutic interventions. Because many biomarkers are initially examined in animal models, the extent to which markers translate from animals to humans is an important issue. The current review highlights many existing and pipeline biomarker approaches, focusing on the degree of correspondence between AD patients and animal models. The review also highlights the need for greater translational correspondence between human and animal biomarkers.
International Journal of Neuroscience | 2012
Jonathan J. Sabbagh; Chelcie F. Heaney; Monica M. Bolton; Andrew S. Murtishaw; Jennifer A. Ure; Jefferson W. Kinney
ABSTRACT The neuropeptide galanin inhibits the evoked release of several neurotransmitters including acetylcholine and modulates adenylate cyclase (AC) activity. Galanin has also been established to impair various forms of learning and memory in rodents. However, whether galanin produces learning deficits by inhibiting cholinergic activity or decreasing AC function has not been clearly established. The current study investigated if donepezil, an acetylcholinesterase inhibitor utilized in Alzheimers disease, could rescue galanin-induced Morris water task deficits in rats. The results demonstrated that donepezil did not alter the previously established deficits induced by galanin. These findings suggest that galanin-mediated spatial learning deficits may be unrelated to its modulation of the cholinergic system.
International Journal of Developmental Neuroscience | 2015
Monica M. Bolton; Chelcie F. Heaney; Andrew S. Murtishaw; Jonathan J. Sabbagh; Christy M. Magcalas; Jefferson W. Kinney
The GABA transmitter system plays a vital role in modulating synaptic formation and activity during development. The GABAB receptor subtype in particular has been implicated in cell migration, promotion of neuronal differentiation, neurite outgrowth, and synapse formation but its role in development is not well characterized. In order to investigate the effects of brief alterations in GABAB signaling in development, we administered to rats the GABAB agonist baclofen (2.0 mg/kg) or antagonist phaclofen (0.3 mg/kg) on postnatal days 7, 9, and 12, and evaluated sensorimotor gating in adulthood. We also examined tissue for changes in multiple proteins associated with GABAB receptor function and proteins associated with synapse formation. Our data indicate that early postnatal alterations to GABAB receptor‐mediated signaling produced sex differences in sensorimotor gating in adulthood. Additionally, we found differences in GABAB receptor subunits and kalirin protein levels in the brain versus saline treated controls. Our data demonstrate that a subtle alteration in GABAB receptor function in early postnatal life induces changes that persist into adulthood.
Neuropharmacology | 2016
Andrew S. Murtishaw; Chelcie F. Heaney; Monica M. Bolton; Jonathan J. Sabbagh; Michael A. Langhardt; Jefferson W. Kinney
Lipopolysaccharide (LPS) is often used to investigate the exacerbatory effects of an immune-related challenge in transgenic models of various neurodegenerative diseases. However, the effects of this inflammatory challenge in an insulin resistant brain state, as seen in diabetes mellitus, a major risk factor for both vascular dementia (VaD) and Alzheimers disease (AD), is not as well characterized. We investigated the effects of an LPS-induced inflammatory challenge on behavioral and biological parameters following intracerebroventricular (ICV) injection of streptozotocin (STZ) in male Sprague-Dawley rats. Subjects received a one-time bilateral ICV infusion of STZ (25 mg/mL, 8 μL per ventricle) or ACSF. One week following ICV infusions, LPS (1 mg/mL, i.p.) or saline was administered to activate the immune system. Behavioral testing began on the 22nd day following STZ-ICV infusion, utilizing the open field and Morris water maze (MWM) tasks. Proteins related to immune function, learning and memory, synaptic plasticity, and key histopathological markers observed in VaD and AD were evaluated. The addition of an LPS-induced immune challenge partially attenuated spatial learning and memory deficits in the MWM in STZ-ICV injected animals. Additionally, LPS administration to STZ-treated animals partially mitigated alterations observed in several protein levels in STZ-ICV alone, including NR2A, GABA(B1), and β-amyloid oligomers. These results suggest that an acute LPS-inflammatory response has a modest protective effect against some of the spatial learning and memory deficits and protein alterations associated with STZ-ICV induction of an insulin resistant brain state.
Neurobiology of Learning and Memory | 2012
Chelcie F. Heaney; Monica M. Bolton; Andrew S. Murtishaw; Jonathan J. Sabbagh; Christy M. Magcalas; Jefferson W. Kinney
American Journal of Neurodegenerative Diseases | 2013
Jonathan J. Sabbagh; Jefferson W. Kinney; Jeffrey L. Cummings