Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan Janssens is active.

Publication


Featured researches published by Jonathan Janssens.


Lancet Neurology | 2012

A C9orf72 promoter repeat expansion in a Flanders-Belgian cohort with disorders of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum: a gene identification study

Ilse Gijselinck; Tim Van Langenhove; Julie van der Zee; Kristel Sleegers; Stéphanie Philtjens; Gernot Kleinberger; Jonathan Janssens; Karolien Bettens; Caroline Van Cauwenberghe; Sandra Pereson; Sebastiaan Engelborghs; Anne Sieben; Rik Vandenberghe; Patrick Santens; Jan De Bleecker; Githa Maes; Veerle Bäumer; Lubina Dillen; Geert Joris; Ivy Cuijt; Ellen Corsmit; Ellen Elinck; Jasper Van Dongen; Steven Vermeulen; Marleen Van den Broeck; Carolien Vaerenberg; Maria Mattheijssens; Karin Peeters; Wim Robberecht; Patrick Cras

BACKGROUND Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are extremes of a clinically, pathologically, and genetically overlapping disease spectrum. A locus on chromosome 9p21 has been associated with both disorders, and we aimed to identify the causal gene within this region. METHODS We studied 305 patients with FTLD, 137 with ALS, and 23 with concomitant FTLD and ALS (FTLD-ALS) and 856 controls from Flanders (Belgium); patients were identified from a hospital-based cohort and were negative for mutations in known FTLD and ALS genes. We also examined the family of one patient with FTLD-ALS previously linked to 9p21 (family DR14). We analysed 130 kbp at 9p21 in association and segregation studies, genomic sequencing, repeat genotyping, and expression studies to identify the causal mutation. We compared genotype-phenotype correlations between mutation carriers and non-carriers. FINDINGS In the patient-control cohort, the single-nucleotide polymorphism rs28140707 within the 130 kbp region of 9p21 was associated with disease (odds ratio [OR] 2·6, 95% CI 1·5-4·7; p=0·001). A GGGGCC repeat expansion in C9orf72 completely co-segregated with disease in family DR14. The association of rs28140707 with disease in the patient-control cohort was abolished when we excluded GGGGCC repeat expansion carriers. In patients with familial disease, six (86%) of seven with FTLD-ALS, seven (47%) of 15 with ALS, and 12 (16%) of 75 with FTLD had the repeat expansion. In patients without known familial disease, one (6%) of 16 with FTLD-ALS, six (5%) of 122 with ALS, and nine (4%) of 230 with FTLD had the repeat expansion. Mutation carriers primarily presented with classic ALS (10 of 11 individuals) or behavioural variant FTLD (14 of 15 individuals). Mean age at onset of FTLD was 55·3 years (SD 8·4) in 21 mutation carriers and 63·2 years (9·6) in 284 non-carriers (p=0·001); mean age at onset of ALS was 54·5 years (9·9) in 13 carriers and 60·4 years (11·4) in 124 non-carriers. Postmortem neuropathological analysis of the brains of three mutation carriers with FTLD showed a notably low TDP-43 load. In brain at postmortem, C9orf72 expression was reduced by nearly 50% in two carriers compared with nine controls (p=0·034). In familial patients, 14% of FTLD-ALS, 50% of ALS, and 62% of FTLD was not accounted for by known disease genes. INTERPRETATION We identified a pathogenic GGGGCC repeat expansion in C9orf72 on chromosome 9p21, as recently also reported in two other studies. The GGGGCC repeat expansion is highly penetrant, explaining all of the contribution of chromosome 9p21 to FTLD and ALS in the Flanders-Belgian cohort. Decreased expression of C9orf72 in brain suggests haploinsufficiency as an underlying disease mechanism. Unidentified genes probably also contribute to the FTLD-ALS disease spectrum. FUNDING Full funding sources listed at end of paper (see Acknowledgments).


Proceedings of the National Academy of Sciences of the United States of America | 2010

TDP-43 transgenic mice develop spastic paralysis and neuronal inclusions characteristic of ALS and frontotemporal lobar degeneration.

Hans Wils; Gernot Kleinberger; Jonathan Janssens; Sandra Pereson; Geert Joris; Ivy Cuijt; Veerle Smits; Chantal Ceuterick-de Groote; Christine Van Broeckhoven; Samir Kumar-Singh

Neuronal cytoplasmic and intranuclear aggregates of RNA-binding protein TDP-43 are a hallmark feature of neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). ALS and FTLD show a considerable clinical and pathological overlap and occur as both familial and sporadic forms. Though missense mutations in TDP-43 cause rare forms of familial ALS, it is not yet known whether this is due to loss of TDP-43 function or gain of aberrant function. Moreover, the role of wild-type (WT) TDP-43, associated with the majority of familial and sporadic ALS/FTLD patients, is also currently unknown. Generating homozygous and hemizygous WT human TDP-43 transgenic mouse lines, we show here a dose-dependent degeneration of cortical and spinal motor neurons and development of spastic quadriplegia reminiscent of ALS. A dose-dependent degeneration of nonmotor cortical and subcortical neurons characteristic of FTLD was also observed. Neurons in the affected spinal cord and brain regions showed accumulation of TDP-43 nuclear and cytoplasmic aggregates that were both ubiquitinated and phosphorylated as observed in ALS/FTLD patients. Moreover, the characteristic ≈25-kDa C-terminal fragments (CTFs) were also recovered from nuclear fractions and correlated with disease development and progression in WT TDP-43 mice. These findings suggest that ≈25-kDa TDP-43 CTFs are noxious to neurons by a gain of aberrant nuclear function.


Acta Neuropathologica | 2013

hnRNP A3 binds to GGGGCC repeats and is a constituent of p62-positive/TDP43-negative inclusions in the hippocampus of patients with C9orf72 mutations

Kohji Mori; Sven Lammich; Ian R. Mackenzie; Ignasi Forné; Sonja Zilow; Hans A. Kretzschmar; Dieter Edbauer; Jonathan Janssens; Gernot Kleinberger; Marc Cruts; Jochen Herms; Manuela Neumann; Christine Van Broeckhoven; Thomas Arzberger; Christian Haass

Genetic analysis revealed the hexanucleotide repeat expansion GGGGCC within the regulatory region of the gene C9orf72 as the most common cause of familial amyotrophic lateral sclerosis and the second most common cause of frontotemporal lobar degeneration. Since repeat expansions might cause RNA toxicity via sequestration of RNA-binding proteins, we searched for proteins capable of binding to GGGGCC repeats. In vitro-transcribed biotinylated RNA containing hexanucleotide GGGGCC or, as control, AAAACC repeats were incubated with nuclear protein extracts. Using stringent filtering protocols 20 RNA-binding proteins with a variety of different functions in RNA metabolism, translation and transport were identified. A subset of these proteins was further investigated by immunohistochemistry in human autopsy brains. This revealed that hnRNP A3 formed neuronal cytoplasmic and intranuclear inclusions in the hippocampus of patients with C9orf72 repeat extensions. Confocal microcopy showed that these inclusions belong to the group of the so far enigmatic p62-positive/TDP-43 negative inclusions characteristically seen in autopsy cases of diseased C9orf72 repeat expansion carriers. Thus, we have identified one protein component of these pathognomonic inclusions.


Human Molecular Genetics | 2013

Pathological mechanisms underlying TDP-43 driven neurodegeneration in FTLD–ALS spectrum disorders

Jonathan Janssens; Christine Van Broeckhoven

Aggregation of misfolded TAR DNA-binding protein 43 (TDP-43) is a striking hallmark of neurodegenerative processes that are observed in several neurological disorders, and in particular in most patients diagnosed with frontotemporal lobar degeneration (FTLD) or amyotrophic lateral sclerosis (ALS). A direct causal link with TDP-43 brain proteinopathy was provided by the identification of pathogenic mutations in TARDBP, the gene encoding TDP-43, in ALS families. However, TDP-43 proteinopathy has also been observed in carriers of mutations in several other genes associated with both ALS and FTLD demonstrating a key role for TDP-43 in neurodegeneration. To date, and despite substantial research into the biology of TDP-43, its functioning in normal brain and in neurodegeneration processes remains largely elusive. Nonetheless, breakthroughs using cellular and animal models have provided valuable insights into ALS and FTLD pathogenesis. Accumulating evidence has redirected the research focus towards a major role for impaired RNA metabolism and protein homeostasis. At the same time, the concept that toxic TDP-43 protein aggregates promote neurodegeneration is losing its credibility. This review aims at highlighting and discussing the current knowledge on TDP-43 driven pathomechanisms leading to neurodegeneration as observed in TDP-43 proteinopathies. Based on the complexity of the associated neurological diseases, a clear understanding of the essential pathological modifications will be crucial for further therapeutic interventions.


Acta Neuropathologica | 2014

Common pathobiochemical hallmarks of progranulin-associated frontotemporal lobar degeneration and neuronal ceroid lipofuscinosis

Julia K. Götzl; Kohji Mori; Markus Damme; Katrin Fellerer; Sabina Tahirovic; Gernot Kleinberger; Jonathan Janssens; Julie van der Zee; Christina M. Lang; Elisabeth Kremmer; Jean-Jacques Martin; Sebastiaan Engelborghs; Hans A. Kretzschmar; Thomas Arzberger; Christine Van Broeckhoven; Christian Haass; Anja Capell

Heterozygous loss-of-function mutations in the progranulin (GRN) gene and the resulting reduction of GRN levels is a common genetic cause for frontotemporal lobar degeneration (FTLD) with accumulation of TAR DNA-binding protein (TDP)-43. Recently, it has been shown that a complete GRN deficiency due to a homozygous GRN loss-of-function mutation causes neuronal ceroid lipofuscinosis (NCL), a lysosomal storage disorder. These findings suggest that lysosomal dysfunction may also contribute to some extent to FTLD. Indeed, Grn(−/−) mice recapitulate not only pathobiochemical features of GRN-associated FTLD-TDP (FTLD-TDP/GRN), but also those which are characteristic for NCL and lysosomal impairment. In Grn(−/−) mice the lysosomal proteins cathepsin D (CTSD), LAMP (lysosomal-associated membrane protein) 1 and the NCL storage components saposin D and subunit c of mitochondrial ATP synthase (SCMAS) were all found to be elevated. Moreover, these mice display increased levels of transmembrane protein (TMEM) 106B, a lysosomal protein known as a risk factor for FTLD-TDP pathology. In line with a potential pathological overlap of FTLD and NCL, Ctsd(−/−) mice, a model for NCL, show elevated levels of the FTLD-associated proteins GRN and TMEM106B. In addition, pathologically phosphorylated TDP-43 occurs in Ctsd(−/−) mice to a similar extent as in Grn(−/−) mice. Consistent with these findings, some NCL patients accumulate pathologically phosphorylated TDP-43 within their brains. Based on these observations, we searched for pathological marker proteins, which are characteristic for NCL or lysosomal impairment in brains of FTLD-TDP/GRN patients. Strikingly, saposin D, SCMAS as well as the lysosomal proteins CTSD and LAMP1/2 are all elevated in patients with FTLD-TDP/GRN. Thus, our findings suggest that lysosomal storage disorders and GRN-associated FTLD may share common features.


The Journal of Pathology | 2012

Cellular ageing, increased mortality and FTLD-TDP-associated neuropathology in progranulin knockout mice†

Hans Wils; Gernot Kleinberger; Sandra Pereson; Jonathan Janssens; Anja Capell; Debby Van Dam; Ivy Cuijt; Geert Joris; Peter Paul De Deyn; Christian Haass; Christine Van Broeckhoven; Samir Kumar-Singh

Loss‐of‐function mutations in progranulin (GRN) are associated with frontotemporal lobar degeneration with intraneuronal ubiquitinated protein accumulations composed primarily of hyperphosphorylated TDP‐43 (FTLD‐TDP). The mechanism by which GRN deficiency causes TDP‐43 pathology or neurodegeneration remains elusive. To explore the role of GRN in vivo, we established Grn knockout mice using a targeted genomic recombination approach and Cre‐LoxP technology. Constitutive Grn homozygous knockout (Grn−/−) mice were born in an expected Mendelian pattern of inheritance and showed no phenotypic alterations compared to heterozygous (Grn+/−) or wild‐type (Wt) littermates until 10 months of age. From then, Grn−/− mice showed reduced survival accompanied by significantly increased gliosis and ubiquitin‐positive accumulations in the cortex, hippocampus, and subcortical regions. Although phosphorylated TDP‐43 could not be detected in the ubiquitinated inclusions, elevated levels of hyperphosphorylated full‐length TDP‐43 were recovered from detergent‐insoluble brain fractions of Grn−/− mice. Phosphorylated TDP‐43 increased with age and was primarily extracted from the nuclear fraction. Grn−/− mice also showed degenerative liver changes and cathepsin D‐positive foamy histiocytes within sinusoids, suggesting widespread defects in lysosomal turnover. An increase in insulin‐like growth factor (IGF)‐1 was observed in Grn−/− brains, and increased IGF‐1 signalling has been associated with decreased longevity. Our data suggest that progranulin deficiency in mice leads to reduced survival in adulthood and increased cellular ageing accompanied by hyperphosphorylation of TDP‐43, and recapitulates key aspects of FTLD‐TDP neuropathology. Copyright


Molecular Neurobiology | 2013

Overexpression of ALS-Associated p.M337V Human TDP-43 in Mice Worsens Disease Features Compared to Wild-type Human TDP-43 Mice

Jonathan Janssens; Hans Wils; Gernot Kleinberger; Geert Joris; Ivy Cuijt; Chantal Ceuterick-de Groote; Christine Van Broeckhoven; Samir Kumar-Singh

Mutations in TAR DNA-binding protein 43 (TDP-43) are associated with familial forms of amyotrophic lateral sclerosis (ALS), while wild-type TDP-43 is a pathological hallmark of patients with sporadic ALS and frontotemporal lobar degeneration (FTLD). Various in vitro and in vivo studies have also demonstrated toxicity of both mutant and wild-type TDP-43 to neuronal cells. To study the potential additional toxicity incurred by mutant TDP-43 in vivo, we generated mutant human TDP-43 (p.M337V) transgenic mouse lines driven by the Thy-1.2 promoter (Mt-TAR) and compared them in the same experimental setting to the disease phenotype observed in wild-type TDP-43 transgenic lines (Wt-TAR) expressing comparable TDP-43 levels. Overexpression of mutant TDP-43 leads to a worsened dose-dependent disease phenotype in terms of motor dysfunction, neurodegeneration, gliosis, and development of ubiquitin and phosphorylated TDP-43 pathology. Furthermore, we show that cellular aggregate formation or accumulation of TDP-43 C-terminal fragments (CTFs) are not primarily responsible for development of the observed disease phenotype in both mutant and wild-type TDP-43 mice.


Frontiers in Endocrinology | 2014

Systems-level G protein-coupled receptor therapy across a neurodegenerative continuum by the GLP-1 receptor system

Jonathan Janssens; Harmonie Etienne; Sherif Idriss; Abdelkrim Azmi; Bronwen Martin; Stuart Maudsley

With our increasing appreciation of the true complexity of diseases and pathophysiologies, it is clear that this knowledge needs to inform the future development of pharmacotherapeutics. For many disorders, the disease mechanism itself is a complex process spanning multiple signaling networks, tissues, and organ systems. Identifying the precise nature and locations of the pathophysiology is crucial for the creation of systemically effective drugs. Diseases once considered constrained to a limited range of organ systems, e.g., central neurodegenerative disorders such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington’ disease (HD), the role of multiple central and peripheral organ systems in the etiology of such diseases is now widely accepted. With this knowledge, it is increasingly clear that these seemingly distinct neurodegenerative disorders (AD, PD, and HD) possess multiple pathophysiological similarities thereby demonstrating an inter-related continuum of disease-related molecular alterations. With this systems-level appreciation of neurodegenerative diseases, it is now imperative to consider that pharmacotherapeutics should be developed specifically to address the systemic imbalances that create the disorders. Identification of potential systems-level signaling axes may facilitate the generation of therapeutic agents with synergistic remedial activity across multiple tissues, organ systems, and even diseases. Here, we discuss the potentially therapeutic systems-level interaction of the glucagon-like peptide 1 (GLP-1) ligand–receptor axis with multiple aspects of the AD, PD, and HD neurodegenerative continuum.


Biochemical Society Transactions | 2011

The role of mutant TAR DNA-binding protein 43 in amyotrophic lateral sclerosis and frontotemporal lobar degeneration

Jonathan Janssens; Gernot Kleinberger; Hans Wils; Christine Van Broeckhoven

TDP-43 (TAR DNA-binding protein 43) has been identified as a key protein of ubiquitinated inclusions in brains of patients with ALS (amyotrophic lateral sclerosis) or FTLD (frontotemporal lobar degeneration), defining a new pathological disease spectrum. Recently, coding mutations have been identified in the TDP-43 gene (TARDBP), which further confirmed the pathogenic nature of the protein. Today, several animal models have been generated to gain more insight into the disease-causing pathways of the FTLD/ALS spectrum. This mini-review summarizes the current status of TDP-43 models, with a focus on mutant TDP-43.


Frontiers in Endocrinology | 2016

GIT2 Acts as a Systems-Level Coordinator of Neurometabolic Activity and Pathophysiological Aging.

Bronwen Martin; Wayne Chadwick; Jonathan Janssens; Richard T. Premont; Robert Schmalzigaug; Kevin G. Becker; Elin Lehrmann; William H. Wood; Yongqing Zhang; Sana Siddiqui; Sung-Soo Park; Wei-na Cong; Caitlin M. Daimon; Stuart Maudsley

Aging represents one of the most complicated and highly integrated somatic processes. Healthy aging is suggested to rely upon the coherent regulation of hormonal and neuronal communication between the central nervous system and peripheral tissues. The hypothalamus is one of the main structures in the body responsible for sustaining an efficient interaction between energy balance and neurological activity and therefore likely coordinates multiple systems in the aging process. We previously identified, in hypothalamic and peripheral tissues, the G protein-coupled receptor kinase interacting protein 2 (GIT2) as a stress response and aging regulator. As metabolic status profoundly affects aging trajectories, we investigated the role of GIT2 in regulating metabolic activity. We found that genomic deletion of GIT2 alters hypothalamic transcriptomic signatures related to diabetes and metabolic pathways. Deletion of GIT2 reduced whole animal respiratory exchange ratios away from those related to primary glucose usage for energy homeostasis. GIT2 knockout (GIT2KO) mice demonstrated lower insulin secretion levels, disruption of pancreatic islet beta cell mass, elevated plasma glucose, and insulin resistance. High-dimensionality transcriptomic signatures from islets isolated from GIT2KO mice indicated a disruption of beta cell development. Additionally, GIT2 expression was prematurely elevated in pancreatic and hypothalamic tissues from diabetic-state mice (db/db), compared to age-matched wild type (WT) controls, further supporting the role of GIT2 in metabolic regulation and aging. We also found that the physical interaction of pancreatic GIT2 with the insulin receptor and insulin receptor substrate 2 was diminished in db/db mice compared to WT mice. Therefore, GIT2 appears to exert a multidimensional “keystone” role in regulating the aging process by coordinating somatic responses to energy deficits.

Collaboration


Dive into the Jonathan Janssens's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ivy Cuijt

University of Antwerp

View shared research outputs
Top Co-Authors

Avatar

Bronwen Martin

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hans Wils

University of Antwerp

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gernot Kleinberger

Ludwig Maximilian University of Munich

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge