Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan Kaye is active.

Publication


Featured researches published by Jonathan Kaye.


Nature Immunology | 2010

Shared dependence on the DNA-binding factor TOX for the development of lymphoid tissue-inducer cell and NK cell lineages

Parinaz Aliahmad; Brian de la Torre; Jonathan Kaye

TOX is a DNA-binding factor required for development of CD4+ T cells, natural killer T cells and regulatory T cells. Here we document that both natural killer (NK) cell development and lymphoid tissue organogenesis were also inhibited in the absence of TOX. We found that the development of lymphoid tissue–inducer cells, a rare subset of specialized cells that has an integral role in lymphoid tissue organogenesis, required TOX. Tox was upregulated considerably in immature NK cells in the bone marrow, consistent with the loss of mature NK cells in the absence of this nuclear protein. Thus, many cell lineages of the immune system share a TOX-dependent step for development.


Journal of Experimental Medicine | 2008

Development of all CD4 T lineages requires nuclear factor TOX

Parinaz Aliahmad; Jonathan Kaye

CD8+ cytotoxic and CD4+ helper/inducer T cells develop from common thymocyte precursors that express both CD4 and CD8 molecules. Upon T cell receptor signaling, these cells initiate a differentiation program that includes complex changes in CD4 and CD8 expression, allowing identification of transitional intermediates in this developmental pathway. Little is known about regulation of these early transitions or their specific importance to CD4 and CD8 T cell development. Here, we show a severe block at the CD4loCD8lo transitional stage of positive selection caused by loss of the nuclear HMG box protein TOX. As a result, CD4 lineage T cells, including regulatory T and CD1d-dependent natural killer T cells, fail to develop. In contrast, functional CD8+ T cells develop in TOX-deficient mice. Our data suggest that TOX-dependent transition to the CD4+CD8lo stage is required for continued development of class II major histocompatibility complex–specific T cells, regardless of ultimate lineage fate.


Journal of Immunology | 2004

An Inhibitory Ig Superfamily Protein Expressed by Lymphocytes and APCs Is Also an Early Marker of Thymocyte Positive Selection

Peggy Han; Olivia D. Goularte; Kevin Rufner; Beverley Wilkinson; Jonathan Kaye

Positive selection of developing thymocytes is associated with changes in cell function, at least in part caused by alterations in expression of cell surface proteins. Surprisingly, however, few such proteins have been identified. We have analyzed the pattern of gene expression during the early stages of murine thymocyte differentiation. These studies led to identification of a cell surface protein that is a useful marker of positive selection and is a likely regulator of mature lymphocyte and APC function. The protein is a member of the Ig superfamily and contains conserved tyrosine-based signaling motifs. The gene encoding this protein was independently isolated recently and termed B and T lymphocyte attenuator (Btla). We describe in this study anti-BTLA mAbs that demonstrate that the protein is expressed in the bone marrow and thymus on developing B and T cells, respectively. BTLA is also expressed by all mature lymphocytes, splenic macrophages, and mature, but not immature bone marrow-derived dendritic cells. Although mice deficient in BTLA do not show lymphocyte developmental defects, T cells from these animals are hyperresponsive to anti-CD3 Ab stimulation. Conversely, anti-BTLA Ab can inhibit T cell activation. These results implicate BTLA as a negative regulator of the activation and/or function of various hemopoietic cell types.


Nature Immunology | 2002

TOX: an HMG box protein implicated in the regulation of thymocyte selection

Beverley Wilkinson; Jeff Y.-F. Chen; Peggy Han; Kevin Rufner; Olivia D. Goularte; Jonathan Kaye

In the thymus, pre-T cell receptor (pre-TCR)–mediated signaling and then TCR-mediated signaling initiate changes in gene expression that result in the maturation of CD4 and CD8 lineage T cells from common precursors. Using gene chip technology, we isolated a murine gene, designated Tox, that encodes a member of the HMG (high-mobility group) box family of DNA-binding proteins. TOX expression is up-regulated by both pre-TCR and TCR activation of immature thymocytes but not by TCR activation of mature naïve T cells. Transgenic mice that express TOX show expanded CD8+ and reduced CD4+ single positive thymocyte subpopulations. We present evidence here that this phenotype results from a perturbation in lineage commitment due to reduced sensitivity to TCR-mediated signaling. This molecular marker of thymic selection events may therefore play a role in establishing the activation threshold of developing T cells and patterning changes in gene expression.


Nature Immunology | 2007

B and T lymphocyte attenuator regulates CD8 + T cell–intrinsic homeostasis and memory cell generation

Carsten Krieg; Onur Boyman; Yang-Xin Fu; Jonathan Kaye

B and T lymphocyte attenuator (BTLA) is a negative regulator of T cell activation, but its function in vivo is not well characterized. Here we show that mice deficient in full-length BTLA or its ligand, herpesvirus entry mediator, had increased number of memory CD8+ T cells. The memory CD8+ T cell phenotype resulted from a T cell–intrinsic perturbation of the CD8+ T cell pool. Naive BTLA-deficient CD8+ T cells were more efficient than wild-type cells at generating memory in a competitive antigen-specific system. This effect was independent of the initial expansion of the responding antigen-specific T cell population. In addition, BTLA negatively regulated antigen-independent homeostatic expansion of CD4+ and CD8+ T cells. These results emphasize two central functions of BTLA in limiting T cell activity in vivo.


Journal of Immunology | 2005

Functional Analysis of B and T Lymphocyte Attenuator Engagement on CD4+ and CD8+ T Cells

Carsten Krieg; Peggy Han; Roslynn Stone; Olivia D. Goularte; Jonathan Kaye

T cell activation can be profoundly altered by coinhibitory and costimulatory molecules. B and T lymphocyte attenuator (BTLA) is a recently identified inhibitory Ig superfamily cell surface protein found on lymphocytes and APC. In this study we analyze the effects of an agonistic anti-BTLA mAb, PK18, on TCR-mediated T cell activation. Unlike many other allele-specific anti-BTLA mAb we have generated, PK18 inhibits anti-CD3-mediated CD4+ T cell proliferation. This inhibition is not dependent on regulatory T cells, nor does the Ab induce apoptosis. Inhibition of T cell proliferation correlates with a profound reduction in IL-2 secretion, although this is not the sole cause of the block of cell proliferation. In contrast, PK18 has no effect on induction of the early activation marker CD69. PK18 also significantly inhibits, but does not ablate, IL-2 secretion in the presence of costimulation as well as reduces T cell proliferation under limiting conditions of activation in the presence of costimulation. Similarly, PK18 inhibits Ag-specific T cell responses in culture. Interestingly, PK18 is capable of delivering an inhibitory signal as late as 16 h after the initiation of T cell activation. CD8+ T cells are significantly less sensitive to the inhibitory effects of PK18. Overall, BTLA adds to the growing list of cell surface proteins that are potential targets to down-modulate T cell function.


Nature Immunology | 2015

The development of innate lymphoid cells requires TOX-dependent generation of a common innate lymphoid cell progenitor

Corey R. Seehus; Parinaz Aliahmad; Brian de la Torre; Iliyan D. Iliev; Lindsay Spurka; Vincent Funari; Jonathan Kaye

Diverse innate lymphoid cell (ILC) subtypes have been defined on the basis of effector function and transcription factor expression. ILCs derive from common lymphoid progenitors, although the transcriptional pathways that lead to ILC-lineage specification remain poorly characterized. Here we found that the transcriptional regulator TOX was required for the in vivo differentiation of common lymphoid progenitors into ILC lineage–restricted cells. In vitro modeling demonstrated that TOX deficiency resulted in early defects in the survival or proliferation of progenitor cells, as well as ILC differentiation at a later stage. In addition, comparative transcriptome analysis of bone marrow progenitors revealed that TOX-deficient cells failed to upregulate many genes of the ILC program, including genes that are targets of Notch, which indicated that TOX is a key determinant of early specification to the ILC lineage.Diverse innate lymphoid cell (ILC) subtypes have been defined, based on effector function and transcription factor expression. ILCs derive from common lymphoid progenitors, although the transcriptional pathways leading to ILC lineage specification remain poorly characterized. Here we demonstrate that transcriptional regulator TOX is required for the in vivo differentiation of common lymphoid progenitors to ILC lineage-restricted cells. In vitro modeling demonstrates that TOX deficiency results in early defects in progenitor cell survival or expansion as well as later stage ILC differentiation. In addition, comparative transcriptome analysis of bone marrow progenitors reveals that TOX-deficient cells fail to upregulate many aspects of the ILC gene program, including Notch gene targets, implicating TOX as a key determinant of early ILC lineage specification.


BMC Genomics | 2003

TOX defines a conserved subfamily of HMG-box proteins

Emmett O'Flaherty; Jonathan Kaye

BackgroundHMG-box proteins are a large and diverse superfamily of architectural factors that share one or more copies of a sequence- and structurally-related DNA binding domain. These proteins can modify chromatin structure by bending and unwinding DNA. HMG-box proteins can be divided into two subfamilies based on whether they recognize DNA in a sequence-dependent or sequence-independent manner. We recently identified an HMG-box protein involved in T cell development, designated TOX, which is highly conserved in humans and mice.ResultsWe show here that based on sequence alignment, TOX best fits into the sequence-independent HMG-box family. Three other human and murine predicted proteins are identified that share a common HMG-box domain with TOX, as well as other features. The gene encoding one of these additional family members has a distinct but overlapping pattern of tissue expression when compared to TOX. In addition, we identify genes encoding predicted TOX HMG-box subfamily members in pufferfish and mosquito.ConclusionsWe have identified a novel subfamily of HMG-box proteins that is related to the recently described TOX protein. The highly conserved nature of the TOX family of proteins in humans and mice and differences in the pattern of expression between family members suggest non-overlapping functions of individual proteins. In addition, our data suggest that the TOX subtype of HMG-box domain first appeared in invertebrates, was duplicated in early vertebrates and likely took on new functions in mammalian species.


Cell | 1992

Differentiation of an immature T cell line: A model of thymic positive selection

Jonathan Kaye; Dennis L. Ellenberger

Thymocyte differentiation is dependent upon recognition of major histocompatibility complex (MHC) molecules on thymic stroma, a process called positive selection. Here we describe an immature CD4+8+ T cell line derived from a TCR transgenic mouse that differentiates into CD4+8- cells in response to antigen and nonthymic antigen-presenting cells. When injected intrathymically, these cells differentiate in the absence of antigen. The ability of immature T cells to recognize MHC molecules in the absence of foreign antigen in the thymus can thus be attributed to a unique property of thymic antigen-presenting cells. These studies also demonstrate the phenotypic and functional changes associated with TCR-mediated T cell maturation and establish an in vitro model system of positive selection.


Journal of Experimental Medicine | 2004

TOX Provides a Link Between Calcineurin Activation and CD8 Lineage Commitment

Parinaz Aliahmad; Emmett O'Flaherty; Peggy Han; Olivia D. Goularte; Beverley Wilkinson; Masanobu Satake; Jeffery D. Molkentin; Jonathan Kaye

T cell development is dependent on the integration of multiple signaling pathways, although few links between signaling cascades and downstream nuclear factors that play a role in thymocyte differentiation have been identified. We show here that expression of the HMG box protein TOX is sufficient to induce changes in coreceptor gene expression associated with β-selection, including CD8 gene demethylation. TOX expression is also sufficient to initiate positive selection to the CD8 lineage in the absence of MHC–TCR interactions. TOX-mediated positive selection is associated with up-regulation of Runx3, implicating CD4 silencing in the process. Interestingly, a strong T cell receptor–mediated signal can modify this cell fate. We further demonstrate that up-regulation of TOX in double positive thymocytes is calcineurin dependent, linking this critical signaling pathway to nuclear changes during positive selection.

Collaboration


Dive into the Jonathan Kaye's collaboration.

Top Co-Authors

Avatar

Parinaz Aliahmad

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Brian de la Torre

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Corey R. Seehus

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Akop Seksenyan

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Asha Kadavallore

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

D A Carson

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peggy Han

Scripps Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge