Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan L. Feng is active.

Publication


Featured researches published by Jonathan L. Feng.


Annual Review of Astronomy and Astrophysics | 2010

Dark Matter Candidates from Particle Physics and Methods of Detection

Jonathan L. Feng

The identity of dark matter is a question of central importance in both astrophysics and particle physics. In the past, the leading particle candidates were cold and collisionless, and typically predicted missing energy signals at particle colliders. However, recent progress has greatly expanded the list of well-motivated candidates and the possible signatures of dark matter. This review begins with a brief summary of the standard model of particle physics and its outstanding problems. I then discuss several dark matter candidates motivated by these problems, including weakly interacting massive particles (WIMPs), superWIMPs, light gravitinos, hidden dark matter, sterile neutrinos, and axions. For each of these, I critically examine the particle physics motivations and present their expected production mechanisms, basic properties, and implications for direct and indirect detection, particle colliders, and astrophysical observations. Upcoming experiments will discover or exclude many of these candidates, and progress may open up an era of unprecedented synergy between studies of the largest and smallest observable length scales.


Physical Review D | 2000

Focus points and naturalness in supersymmetry

Jonathan L. Feng; K. Matchev; Takeo Moroi

We analyze focus points in supersymmetric theories, where a parameters renormalization group trajectories meet for a family of ultraviolet boundary conditions. We show that in a class of models including minimal supergravity, the up-type Higgs mass parameter has a focus point at the weak scale, where its value is highly insensitive to the universal scalar mass. As a result, scalar masses as large as 2 to 3 TeV are consistent with naturalness, and all squarks, sleptons and heavy Higgs scalars may be beyond the discovery reaches of the CERN Large Hadron Collider and proposed linear colliders. Gaugino and Higgsino masses are, however, still constrained to be near the weak scale. The focus point behavior is remarkably robust, holding for both moderate and large tan {beta}, any weak scale gaugino masses and A parameters, variations in the top quark mass within experimental bounds, and for large variations in the boundary condition scale. (c) 2000 The American Physical Society.


Physical Review Letters | 2002

Kaluza-Klein dark matter

Hsin-Chia Cheng; Jonathan L. Feng; K. Matchev

We propose that cold dark matter is made of Kaluza-Klein particles and explore avenues for its detection. The lightest Kaluza-Klein state is an excellent dark matter candidate if standard model particles propagate in extra dimensions and Kaluza-Klein parity is conserved. We consider Kaluza-Klein gauge bosons. In sharp contrast to the case of supersymmetric dark matter, these annihilate to hard positrons, neutrinos, and photons with unsuppressed rates. Direct detection signals are also promising. These conclusions are generic to bosonic dark matter candidates.


Physical Review Letters | 2003

Superweakly Interacting Massive Particles

Jonathan L. Feng; Arvind Rajaraman; Fumihiro Takayama

We investigate a new class of dark matter: superweakly interacting massive particles (super-WIMPs). As with conventional WIMPs, super-WIMPs appear in well motivated particle theories with naturally the correct relic density. In contrast to WIMPs, however, super-WIMPs are impossible to detect in all conventional dark matter searches. We consider the concrete examples of gravitino and graviton cold dark matter in models with supersymmetry and universal extra dimensions, respectively, and show that super-WIMP dark matter satisfies stringent constraints from big bang nucleosynthesis and the cosmic microwave background.


Physical Review D | 2004

Supergravity with a gravitino lightest supersymmetric particle

Jonathan L. Feng; Shufang Su; Fumihiro Takayama

We investigate supergravity models in which the lightest supersymmetric particle (LSP) is a stable gravitino. We assume that the next-lightest supersymmetric particle (NLSP) freezes out with its thermal relic density before decaying to the gravitino at time t ~ 10^4 s - 10^8 s. In contrast to studies that assume a fixed gravitino relic density, the thermal relic density assumption implies upper, not lower, bounds on superpartner masses, with important implications for particle colliders. We consider slepton, sneutrino, and neutralino NLSPs, and determine what superpartner masses are viable in all of these cases, applying CMB and electromagnetic and hadronic BBN constraints to the leading two- and three-body NLSP decays. Hadronic constraints have been neglected previously, but we find that they provide the most stringent constraints in much of the natural parameter space. We then discuss the collider phenomenology of supergravity with a gravitino LSP. We find that colliders may provide important insights to clarify BBN and the thermal history of the Universe below temperatures around 10 GeV and may even provide precise measurements of the gravitinos mass and couplings.


Physical Review Letters | 2001

Black hole production by cosmic rays

Jonathan L. Feng; Alfred D. Shapere

Ultrahigh energy cosmic rays create black holes in scenarios with extra dimensions and TeV-scale gravity. In particular, cosmic neutrinos will produce black holes deep in the atmosphere, initiating quasihorizontal showers far above the standard model rate. At the Auger Observatory, hundreds of black hole events may be observed, providing evidence for extra dimensions and the first opportunity for experimental study of microscopic black holes. If no black holes are found, the fundamental Planck scale must be above 2 TeV for any number of extra dimensions.


Physical Review Letters | 2008

Dark-Matter Particles without Weak-Scale Masses or Weak Interactions

Jonathan L. Feng; Jason Kumar

We propose that dark matter is composed of particles that naturally have the correct thermal relic density, but have neither weak-scale masses nor weak interactions. These models emerge naturally from gauge-mediated supersymmetry breaking, where they elegantly solve the dark-matter problem. The framework accommodates single or multiple component dark matter, dark-matter masses from 10 MeV to 10 TeV, and interaction strengths from gravitational to strong. These candidates enhance many direct and indirect signals relative to weakly interacting massive particles and have qualitatively new implications for dark-matter searches and cosmological implications for colliders.


Physical Review D | 2003

Superweakly interacting massive particle dark matter signals from the early Universe

Jonathan L. Feng; Arvind Rajaraman; Fumihiro Takayama

Cold dark matter may be made of superweakly-interacting massive particles, superWIMPs, that naturally inherit the desired relic density from late decays of metastable WIMPs. Well-motivated examples are weak-scale gravitinos in supergravity and Kaluza-Klein gravitons from extra dimensions. These particles are impossible to detect in all dark matter experiments. We find, however, that superWIMP dark matter may be discovered through cosmological signatures from the early universe. In particular, superWIMP dark matter has observable consequences for Big Bang nucleosynthesis and the cosmic microwave background (CMB), and may explain the observed underabundance of 7Li without upsetting the concordance between deuterium and CMB baryometers. We discuss implications for future probes of CMB black body distortions and collider searches for new particles. In the course of this study, we also present a model-independent analysis of entropy production from late-decaying particles in light of WMAP data.


Nuclear Physics | 2001

Saltatory relaxation of the cosmological constant

Jonathan L. Feng; John March-Russell; Savdeep Sethi; Frank Wilczek

Abstract We modify and extend an earlier proposal by Brown and Teitelboim to relax the effective cosmological term by nucleation of branes coupled to a three-index gauge potential. Microscopic considerations from string/M-theory suggest two major innovations in the framework. First, the dependence of brane properties on the compactification of extra dimensions may generate a very small quantized unit for jumps in the effective cosmological term. Second, internal degrees of freedom for multiply coincident branes may enhance tunneling rates by exponentially large density of states factors. These new features essentially alter the relaxation dynamics. By requiring stability on the scale of the lifetime of the universe, rather than absolute stability, we derive a non-trivial relation between the supersymmetry breaking scale and the value of the cosmological term. It is plausibly, though not certainly, satisfied in Nature.


Physics Letters B | 2011

Isospin-Violating Dark Matter

Jonathan L. Feng; Jason Kumar; Danny Marfatia; David Sanford

Abstract Searches for dark matter scattering off nuclei are typically compared assuming that the dark matterʼs spin-independent couplings are identical for protons and neutrons. This assumption is neither innocuous nor well motivated. We consider isospin-violating dark matter (IVDM) with one extra parameter, the ratio of neutron to proton couplings, and include the isotope distribution for each detector. For a single choice of the coupling ratio, the DAMA and CoGeNT signals are consistent with each other and with current XENON constraints, and they unambiguously predict near future signals at XENON and CRESST. We provide a quark-level realization of IVDM as WIMPless dark matter that is consistent with all collider and low-energy bounds.

Collaboration


Dive into the Jonathan L. Feng's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Sanford

University of California

View shared research outputs
Top Co-Authors

Avatar

Yael Shadmi

Technion – Israel Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Iftah Galon

Technion – Israel Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tim M. P. Tait

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge