Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan M. Chase is active.

Publication


Featured researches published by Jonathan M. Chase.


Nature | 2016

Addition of multiple limiting resources reduces grassland diversity

W. Stanley Harpole; Lauren L. Sullivan; Eric M. Lind; Jennifer Firn; Peter B. Adler; Elizabeth T. Borer; Jonathan M. Chase; Philip A. Fay; Yann Hautier; Helmut Hillebrand; Andrew S. MacDougall; Eric W. Seabloom; Ryan J. Williams; Jonathan D. Bakker; Marc W Cadotte; Enrique J. Chaneton; Chengjin Chu; Elsa E. Cleland; Carla M. D'Antonio; Kendi F. Davies; Daniel S. Gruner; Nicole Hagenah; Kevin P. Kirkman; Johannes M. H. Knops; Kimberly J. La Pierre; Rebecca L. McCulley; Joslin L. Moore; John W Morgan; Suzanne M. Prober; Anita C. Risch

Niche dimensionality provides a general theoretical explanation for biodiversity—more niches, defined by more limiting factors, allow for more ways that species can coexist. Because plant species compete for the same set of limiting resources, theory predicts that addition of a limiting resource eliminates potential trade-offs, reducing the number of species that can coexist. Multiple nutrient limitation of plant production is common and therefore fertilization may reduce diversity by reducing the number or dimensionality of belowground limiting factors. At the same time, nutrient addition, by increasing biomass, should ultimately shift competition from belowground nutrients towards a one-dimensional competitive trade-off for light. Here we show that plant species diversity decreased when a greater number of limiting nutrients were added across 45 grassland sites from a multi-continent experimental network. The number of added nutrients predicted diversity loss, even after controlling for effects of plant biomass, and even where biomass production was not nutrient-limited. We found that elevated resource supply reduced niche dimensionality and diversity and increased both productivity and compositional turnover. Our results point to the importance of understanding dimensionality in ecological systems that are undergoing diversity loss in response to multiple global change factors.


Journal of Applied Ecology | 2018

Biodiversity change is uncoupled from species richness trends: consequences for conservation and monitoring

Helmut Hillebrand; Bernd Blasius; Elizabeth T. Borer; Jonathan M. Chase; John A. Downing; Britas Klemens Eriksson; Christopher T. Filstrup; W. Stanley Harpole; Dorothee Hodapp; Stefano Larsen; Aleksandra M. Lewandowska; Eric W. Seabloom; Dedmer B. Van de Waal; Alexey B. Ryabov

Global concern about human impact on biological diversity has triggered an intense research agenda on drivers and consequences of biodiversity change in parallel with international policy seeking to conserve biodiversity and associated ecosystem functions. Quantifying the trends in biodiversity is far from trivial, however, as recently documented by meta-analyses, which report little if any net change in local species richness through time. n Here, we summarise several limitations of species richness as a metric of biodiversity change and show that the expectation of directional species richness trends under changing conditions is invalid. Instead, we illustrate how a set of species turnover indices provide more information content regarding temporal trends in biodiversity, as they reflect how dominance and identity shift in communities over time. n We apply these metrics to three monitoring datasets representing different ecosystem types. In all datasets, nearly complete species turnover occurred, but this was disconnected from any species richness trends. Instead, turnover was strongly influenced by changes in species presence (identities) and dominance (abundances). We further show that these metrics can detect phases of strong compositional shifts in monitoring data and thus identify a different aspect of biodiversity change decoupled from species richness. n Synthesis and applications: Temporal trends in species richness are insufficient to capture key changes in biodiversity in changing environments. In fact, reductions in environmental quality can lead to transient increases in species richness if immigration or extinction has different temporal dynamics. Thus, biodiversity monitoring programmes need to go beyond analyses of trends in richness in favour of more meaningful assessments of biodiversity change.


Journal of Ecology | 2015

Disturbance alters beta‐diversity but not the relative importance of community assembly mechanisms

Jonathan Myers; Jonathan M. Chase; Raelene M. Crandall; Iván Jiménez

Summary n nEcological disturbances are often hypothesized to alter community assembly processes that influence variation in community composition (β-diversity). Disturbance can cause convergence in community composition (low β-diversity) by increasing niche selection of disturbance-tolerant species. Alternatively, disturbance can cause divergence in community composition (high β-diversity) by increasing habitat filtering across environmental gradients. However, because disturbance may also influence β-diversity through random sampling effects owing to changes in the number of individuals in local communities (community size) or abundances in the regional species pool, observed patterns of β-diversity alone cannot be used to unambiguously discern the relative importance of community assembly mechanisms. nWe compared β-diversity of woody plants and inferred assembly mechanisms among unburned forests and forests managed with prescribed fires in the Missouri Ozarks, USA. Using a null-model approach, we compared how environmental gradients influenced β-diversity after controlling for differences in local community size and regional species abundances between unburned and burned landscapes. nObserved β-diversity was higher in burned landscapes. However, this pattern disappeared or reversed after controlling for smaller community size in burned landscapes. nβ-diversity was higher than expected by chance in both landscapes, indicating an important role for processes that create clumped species distributions. Moreover, fire appeared to decrease clumping of species at broader spatial scales, suggesting homogenization of community composition through niche selection of disturbance-tolerant species. Environmental variables, however, explained similar amounts of variation in β-diversity in both landscapes, suggesting that disturbance did not alter the relative importance of habitat filtering. nOur results indicate that contingent responses of communities to fire reflect a combination of fire-induced changes in local community size and scale-dependent effects of fire on species clumping across landscapes. nSynthesis. Although niche-based mechanisms of community assembly are often invoked to explain changes in community composition following disturbance, our results suggest that these changes also arise through random sampling effects owing to the influence of disturbance on community size. Comparative studies of these processes across disturbed ecosystems will provide important insights into the ecological conditions that determine when disturbance alters the interplay of deterministic and stochastic processes in natural and human-modified landscapes.


Ecology | 2017

Community assembly and the functioning of ecosystems: how metacommunity processes alter ecosystems attributes

Mathew A. Leibold; Jonathan M. Chase; S. K. Morgan Ernest

Recent work linking community structure and ecosystem function has primarily focused on the effects of local species richness but has neglected the dispersal-dependent processes of community assembly that are ultimately involved in determining community structure and its relation to ecosystems. Here we combine simple consumer-resource competition models and metacommunity theory with discussion of case studies to outline how spatial processes within metacommunities can alter community assembly and modify expectations about how species diversity and composition influence ecosystem attributes at local scales. We argue that when community assembly is strongly limited by dispersal, this can constrain ecosystem functioning by reducing positive selection effects (reducing the probability of the most productive species becoming dominant) even though it may often also enhance complementarity (favoring combinations of species that enhance production even though they may not individually be most productive). Conversely, excess dispersal with strong source-sink relations among heterogeneous habitats can reduce ecosystem functioning by swamping local filters that would normally favor better-suited species. Ecosystem function is thus most likely maximized at intermediate levels of dispersal where both of these effects are minimized. In this scenario, we find that the selection effect is maximized, while complementarity is often reduced and local diversity may often be relatively low. Our synthesis emphasizes that it is the entire set of community assembly processes that affect the functioning of ecosystems, not just the part that determines local species richness.


Functional Ecology | 2017

Out of the shadows: multiple nutrient limitations drive relationships among biomass, light and plant diversity

W. Stanley Harpole; Lauren L. Sullivan; Eric M. Lind; Jennifer Firn; Peter B. Adler; Elizabeth T. Borer; Jonathan M. Chase; Philip A. Fay; Yann Hautier; Helmut Hillebrand; Andrew S. MacDougall; Eric W. Seabloom; Jonathan D. Bakker; Marc W. Cadotte; Enrique J. Chaneton; Chengjin Chu; Nicole Hagenah; Kevin P. Kirkman; Kimberly J. La Pierre; Joslin L. Moore; John W. Morgan; Suzanne M. Prober; Anita C. Risch; Martin Schuetz; Carly J. Stevens

The paradigmatic hypothesis for the effect of fertilisation on plant diversity represents a one-dimensional trade-off for plants competing for below-ground nutrients (generically) and above-ground light: fertilisation reduces competition for nutrients while increasing biomass and thereby shifts competition for depleted available light. The essential problem of this simple paradigm is that it misses both the multivariate and mechanistic nature of the factors that determine biodiversity as well as their causal relationships. We agree that light limitation, as DeMalach and Kadmon argue, can indeed be an important factor associated with diversity loss, and we presented it as an integral part of our tests of the niche dimension hypothesis. We disagree with DeMalach and Kadmon that light is the ‘main’ factor explaining diversity, because this misrepresents the causal structure represented in the design of our experiment in which multiple nutrient addition was the ultimate causal driver of a suite of correlated responses that included diversity and light, and especially live and dead biomass, which are the factors that control light depletion. Our findings highlight that multiple nutrient limitations can structure plant diversity and composition independently of changes in light and biomass. For example, approximately one-third of our sites showed no significant increase in biomass with greater number of added nutrients yet still lost diversity when nutrients were added. The important message is that while light limitation can be an important contributor to diversity loss, it is not a necessary mechanism.


Ecology Letters | 2018

Integrating community assembly and biodiversity to better understand ecosystem function: the Community Assembly and the Functioning of Ecosystems (CAFE) approach

Katherine H. Bannar-Martin; Colin T. Kremer; S. K. Morgan Ernest; Mathew A. Leibold; Harald Auge; Jonathan M. Chase; Steven Declerck; Nico Eisenhauer; Stanley Harpole; Helmut Hillebrand; Forest Isbell; Thomas Koffel; Stefano Larsen; Anita Narwani; Jana S. Petermann; Christiane Roscher; Juliano Sarmento Cabral; Sarah R. Supp

The research of a generation of ecologists was catalysed by the recognition that the number and identity of species in communities influences the functioning of ecosystems. The relationship between biodiversity and ecosystem functioning (BEF) is most often examined by controlling species richness and randomising community composition. In natural systems, biodiversity changes are often part of a bigger community assembly dynamic. Therefore, focusing on community assembly and the functioning of ecosystems (CAFE), by integrating both species richness and composition through species gains, losses and changes in abundance, will better reveal how community changes affect ecosystem function. We synthesise the BEF and CAFE perspectives using an ecological application of the Price equation, which partitions the contributions of richness and composition to function. Using empirical examples, we show how the CAFE approach reveals important contributions of composition to function. These examples show how changes in species richness and composition driven by environmental perturbations can work in concert or antagonistically to influence ecosystem function. Considering how communities change in an integrative fashion, rather than focusing on one axis of community structure at a time, will improve our ability to anticipate and predict changes in ecosystem function.


Ecology Letters | 2018

Embracing scale-dependence to achieve a deeper understanding of biodiversity and its change across communities

Jonathan M. Chase; Brian J. McGill; Daniel J. McGlinn; Felix May; Shane A. Blowes; Xiao Xiao; Tiffany M. Knight; Oliver Purschke; Nicholas J. Gotelli

Because biodiversity is multidimensional and scale-dependent, it is challenging to estimate its change. However, it is unclear (1) how much scale-dependence matters for empirical studies, and (2) if it does matter, how exactly we should quantify biodiversity change. To address the first question, we analysed studies with comparisons among multiple assemblages, and found that rarefaction curves frequently crossed, implying reversals in the ranking of species richness across spatial scales. Moreover, the most frequently measured aspect of diversity - species richness - was poorly correlated with other measures of diversity. Second, we collated studies that included spatial scale in their estimates of biodiversity change in response to ecological drivers and found frequent and strong scale-dependence, including nearly 10% of studies which showed that biodiversity changes switched directions across scales. Having established the complexity of empirical biodiversity comparisons, we describe a synthesis of methods based on rarefaction curves that allow more explicit analyses of spatial and sampling effects on biodiversity comparisons. We use a case study of nutrient additions in experimental ponds to illustrate how this multi-dimensional and multi-scale perspective informs the responses of biodiversity to ecological drivers.


Proceedings of the Royal Society B: Biological Sciences | 2017

Global reef fish richness gradients emerge from divergent and scale-dependent component changes

Shane A. Blowes; Jonathan Belmaker; Jonathan M. Chase

Biodiversity varies from place to place due to environmental and historical factors. To improve our understanding of how history and the environment influence observed patterns, we need to address the limitations of the most commonly used biodiversity metric, species richness. Here, we show that scale-dependent dissections of species richness into components of total abundance, species relative abundances and spatial aggregations of species reveal that two well-known biogeographic reef fish species richness gradients emerge from very different underlying component patterns. Latitudinal richness is underpinned by scale-independent patterns of total and relative abundances, suggesting ecological constraints scale up to determine abundances within communities. In contrast, the longitudinal gradient of species richness typically attributed to historical biogeography only emerges at the largest scale and is accompanied by a similar pattern of relative abundances, suggesting that site-to-site compositional variation leading to species aggregation (i.e. a component of β-diversity) underlies this gradient. Examining relationships among the components that underpin biodiversity gradients reveals new patterns that can better identify processes influencing patterns of biodiversity.


Ecology and Evolution | 2017

Habitat patch size alters the importance of dispersal for species diversity in an experimental freshwater community

Matthew S. Schuler; Jonathan M. Chase; Tiffany M. Knight

Abstract Increased dispersal of individuals among discrete habitat patches should increase the average number of species present in each local habitat patch. However, experimental studies have found variable effects of dispersal on local species richness. Priority effects, predators, and habitat heterogeneity have been proposed as mechanisms that limit the effect of dispersal on species richness. However, the size of a habitat patch could affect how dispersal regulates the number of species able to persist. We investigated whether habitat size interacted with dispersal rate to affect the number of species present in local habitats. We hypothesized that increased dispersal rates would positively affect local species richness more in small habitats than in large habitats, because rare species would be protected from demographic extinction. To test the interaction between dispersal rate and habitat size, we factorially manipulated the size of experimental ponds and dispersal rates, using a model community of freshwater zooplankton. We found that high‐dispersal rates enhanced local species richness in small experimental ponds, but had no effect in large experimental ponds. Our results suggest that there is a trade‐off between patch connectivity (a mediator of dispersal rates) and patch size, providing context for understanding the variability observed in dispersal effects among natural communities, as well as for developing conservation and management plans in an increasingly fragmented world.


bioRxiv | 2018

Integrating global patterns and drivers of tree diversity across a continuum of spatial grains

Petr Keil; Jonathan M. Chase

What drives biodiversity and where are the most biodiverse places on Earth? The answer critically depends on spatial scale (grain), and is obscured by lack of data and mismatches in their grain. We resolve this with cross-scale models integrating global data on tree species richness (S) from 1338 local forest surveys and 287 regional checklists, enabling estimation of drivers and patterns of biodiversity at any desired grain. We uncover grain-dependent effects of both environment and biogeographic regions on S, with a positive regional effect of Southeast Asia at coarse grain that disappears at fine grains. We show that, globally, biodiversity cannot be attributed to purely environmental or regional drivers, since regions are environmentally distinct. Finally, we predict global maps of biodiversity at two grains, identifying areas of exceptional species turnover in China, East Africa, and North America. Our cross-scale approach unifies disparate results from previous studies regarding environmental versus biogeographic predictors of biodiversity, and enables efficient integration of heterogeneous data.

Collaboration


Dive into the Jonathan M. Chase's collaboration.

Top Co-Authors

Avatar

Mathew A. Leibold

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Felix May

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge