Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan M. Galazka is active.

Publication


Featured researches published by Jonathan M. Galazka.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation

Suk Jin Ha; Jonathan M. Galazka; Soo Rin Kim; Jin Ho Choi; Xiaomin Yang; Jin-Ho Seo; N. Louise Glass; Jamie H. D. Cate; Yong Su Jin

The use of plant biomass for biofuel production will require efficient utilization of the sugars in lignocellulose, primarily glucose and xylose. However, strains of Saccharomyces cerevisiae presently used in bioethanol production ferment glucose but not xylose. Yeasts engineered to ferment xylose do so slowly, and cannot utilize xylose until glucose is completely consumed. To overcome these bottlenecks, we engineered yeasts to coferment mixtures of xylose and cellobiose. In these yeast strains, hydrolysis of cellobiose takes place inside yeast cells through the action of an intracellular β-glucosidase following import by a high-affinity cellodextrin transporter. Intracellular hydrolysis of cellobiose minimizes glucose repression of xylose fermentation allowing coconsumption of cellobiose and xylose. The resulting yeast strains, cofermented cellobiose and xylose simultaneously and exhibited improved ethanol yield when compared to fermentation with either cellobiose or xylose as sole carbon sources. We also observed improved yields and productivities from cofermentation experiments performed with simulated cellulosic hydrolyzates, suggesting this is a promising cofermentation strategy for cellulosic biofuel production. The successful integration of cellobiose and xylose fermentation pathways in yeast is a critical step towards enabling economic biofuel production.


Science | 2010

Cellodextrin Transport in Yeast for Improved Biofuel Production

Jonathan M. Galazka; Chaoguang Tian; William T. Beeson; Bruno Martinez; N. Louise Glass; Jamie H. D. Cate

Improving Yeast for Biofuel Production The biofuels industry uses the yeast Saccharomyces cerevisiae to produce ethanol from sugars derived from cornstarch or sugar cane. Plant cell walls are an attractive sugar source; however, yeast does not grow efficiently on cellulose–derived sugars (cellodextrins). Galazka et al. (p. 84, published online 9 September) now show that a model cellolytic fungus Neurospora crassa relies on a cellodextrin transport system to facilitate growth on cellulose. Yeast reconstituted with this transport system grew efficiently on cellodextrins, which could potentially improve the efficiency of cellulosic biofuel production. Reconstitution of a fungal transport system allows yeast to grow on sugars derived from cellulose. Fungal degradation of plant biomass may provide insights for improving cellulosic biofuel production. We show that the model cellulolytic fungus Neurospora crassa relies on a high-affinity cellodextrin transport system for rapid growth on cellulose. Reconstitution of the N. crassa cellodextrin transport system in Saccharomyces cerevisiae promotes efficient growth of this yeast on cellodextrins. In simultaneous saccharification and fermentation experiments, the engineered yeast strains more rapidly convert cellulose to ethanol when compared with yeast lacking this system.


Molecular BioSystems | 2010

Overcoming glucose repression in mixed sugar fermentation by co-expressing a cellobiose transporter and a β-glucosidase in Saccharomyces cerevisiae.

Sijin Li; Jing Du; Jie Sun; Jonathan M. Galazka; N. Louise Glass; Jamie H. D. Cate; Xiaomin Yang; Huimin Zhao

Glucose repression is one of the main limitations in mixed lignocellulosic sugar fermentation for cost-effective production of fuels and chemicals. Here we report a novel strategy to overcome glucose repression by co-expressing a cellobiose transporter and a β-glucosidase in an engineered d-xylose-utilizing Saccharomyces cerevisiae strain. The resulting strain can simultaneously utilize cellobiose and d-xylose for ethanol production.


Applied and Environmental Microbiology | 2011

Cofermentation of cellobiose and galactose by an engineered Saccharomyces cerevisiae strain.

Suk Jin Ha; Qiaosi Wei; Soo Rin Kim; Jonathan M. Galazka; Jamie H. D. Cate; Yong Su Jin

ABSTRACT We demonstrate improved ethanol yield and productivity through cofermentation of cellobiose and galactose by an engineered Saccharomyces cerevisiae strain expressing genes coding for cellodextrin transporter (cdt-1) and intracellular β-glucosidase (gh1-1) from Neurospora crassa. Simultaneous fermentation of cellobiose and galactose can be applied to producing biofuels from hydrolysates of marine plant biomass.


Metabolic Engineering | 2013

Enhanced xylitol production through simultaneous co-utilization of cellobiose and xylose by engineered Saccharomyces cerevisiae

Eun Joong Oh; Suk Jin Ha; Soo Rin Kim; Won Heong Lee; Jonathan M. Galazka; Jamie H. D. Cate; Yong Su Jin

As Saccharomyces cerevisiae cannot utilize xylose as a carbon source, expression of XYL1 coding for xylose reductase (XR) from Scheffersomyces (Pichia) stipitis enabled production of xylitol from xylose with a high yield. However, insufficient supply of NAD(P)H for XR and inhibition of xylose uptake by glucose are identified as major constraints for achieving high xylitol productivity. To overcome these problems, we engineered S. cerevisiae capable of converting xylose into xylitol through simultaneous utilization of xylose and cellobiose. An engineered S. cerevisiae (D-10-BT) expressing XR, cellodextrin transporter (cdt-1) and intracellular β-glucosidase (gh1-1) produced xylitol via simultaneous utilization of cellobiose and xylose. The D-10-BT strain exhibited 40% higher volumetric xylitol productivity with co-consumption of cellobiose and xylose compared to sequential utilization of glucose and xylose. Furthermore, the overexpression of S. cerevisiae ALD6, IDP2, or S. stipitis ZWF1 coding for cytosolic NADP(+)-dependent dehydrogenases increased the intracellular NADPH availability of the D-10-BT strain, which resulted in a 37-63% improvement in xylitol productivity when cellobiose and xylose were co-consumed. These results suggest that co-utilization of cellobiose and xylose can lead to improved xylitol production through enhanced xylose uptake and efficient cofactor regeneration.


Applied Microbiology and Biotechnology | 2014

Analysis of cellodextrin transporters from Neurospora crassa in Saccharomyces cerevisiae for cellobiose fermentation

Heejin Kim; Won Heong Lee; Jonathan M. Galazka; Jamie H. D. Cate; Yong Su Jin

Saccharomyces cerevisiae can be engineered to ferment cellodextrins produced by cellulases as a product of cellulose hydrolysis. Direct fermentation of cellodextrins instead of glucose is advantageous because glucose inhibits cellulase activity and represses the fermentation of non-glucose sugars present in cellulosic hydrolyzates. To facilitate cellodextrin utilization by S. cerevisiae, a fungal cellodextrin-utilizing pathway from Neurospora crassa consisting of a cellodextrin transporter and a cellodextrin hydrolase has been introduced into S. cerevisiae. Two cellodextrin transporters (CDT-1 and CDT-2) were previously identified in N. crassa, but their kinetic properties and efficiency for cellobiose fermentation have not been studied in detail. In this study, CDT-1 and CDT-2, which are hypothesized to transport cellodextrin with distinct mechanisms, were introduced into S. cerevisiae along with an intracellular β-glucosidase (GH1-1). Cellobiose transport assays with the resulting strains indicated that CDT-1 is a proton symporter while CDT-2 is a simple facilitator. A strain expressing CDT-1 and GH1-1 (DCDT-1G) showed faster cellobiose fermentation than the strain expressing CDT-2 and GH1-1 (DCDT-2G) under various culture conditions with different medium compositions and aeration levels. While CDT-2 is expected to have energetic benefits, the expression levels and kinetic properties of CDT-1 in S. cerevisiae appears to be optimum for cellobiose fermentation. These results suggest CDT-1 is a more effective cellobiose transporter than CDT-2 for engineering S. cerevisiae to ferment cellobiose.


Applied and Environmental Microbiology | 2013

Single Amino Acid Substitutions in HXT2.4 from Scheffersomyces stipitis Lead to Improved Cellobiose Fermentation by Engineered Saccharomyces cerevisiae

Suk Jin Ha; Heejin Kim; Yuping Lin; Myoung Uoon Jang; Jonathan M. Galazka; Tae Jip Kim; Jamie H. D. Cate; Yong Su Jin

ABSTRACT Saccharomyces cerevisiae cannot utilize cellobiose, but this yeast can be engineered to ferment cellobiose by introducing both cellodextrin transporter (cdt-1) and intracellular β-glucosidase (gh1-1) genes from Neurospora crassa. Here, we report that an engineered S. cerevisiae strain expressing the putative hexose transporter gene HXT2.4 from Scheffersomyces stipitis and gh1-1 can also ferment cellobiose. This result suggests that HXT2.4p may function as a cellobiose transporter when HXT2.4 is overexpressed in S. cerevisiae. However, cellobiose fermentation by the engineered strain expressing HXT2.4 and gh1-1 was much slower and less efficient than that by an engineered strain that initially expressed cdt-1 and gh1-1. The rate of cellobiose fermentation by the HXT2.4-expressing strain increased drastically after serial subcultures on cellobiose. Sequencing and retransformation of the isolated plasmids from a single colony of the fast cellobiose-fermenting culture led to the identification of a mutation (A291D) in HXT2.4 that is responsible for improved cellobiose fermentation by the evolved S. cerevisiae strain. Substitutions for alanine (A291) of negatively charged amino acids (A291E and A291D) or positively charged amino acids (A291K and A291R) significantly improved cellobiose fermentation. The mutant HXT2.4(A291D) exhibited 1.5-fold higher Km and 4-fold higher V max values than those from wild-type HXT2.4, whereas the expression levels were the same. These results suggest that the kinetic properties of wild-type HXT2.4 expressed in S. cerevisiae are suboptimal, and mutations of A291 into bulky charged amino acids might transform HXT2.4p into an efficient transporter, enabling rapid cellobiose fermentation by engineered S. cerevisiae strains.


Biotechnology for Biofuels | 2014

Leveraging transcription factors to speed cellobiose fermentation by Saccharomyces cerevisiae.

Yuping Lin; Kulika Chomvong; Ligia Acosta-Sampson; Raíssa Estrela; Jonathan M. Galazka; Soo Rin Kim; Yong Su Jin; Jamie H. D. Cate

BackgroundSaccharomyces cerevisiae, a key organism used for the manufacture of renewable fuels and chemicals, has been engineered to utilize non-native sugars derived from plant cell walls, such as cellobiose and xylose. However, the rates and efficiencies of these non-native sugar fermentations pale in comparison with those of glucose. Systems biology methods, used to understand biological networks, hold promise for rational microbial strain development in metabolic engineering. Here, we present a systematic strategy for optimizing non-native sugar fermentation by recombinant S. cerevisiae, using cellobiose as a model.ResultsDifferences in gene expression between cellobiose and glucose metabolism revealed by RNA deep sequencing indicated that cellobiose metabolism induces mitochondrial activation and reduces amino acid biosynthesis under fermentation conditions. Furthermore, glucose-sensing and signaling pathways and their target genes, including the cAMP-dependent protein kinase A pathway controlling the majority of glucose-induced changes, the Snf3-Rgt2-Rgt1 pathway regulating hexose transport, and the Snf1-Mig1 glucose repression pathway, were at most only partially activated under cellobiose conditions. To separate correlations from causative effects, the expression levels of 19 transcription factors perturbed under cellobiose conditions were modulated, and the three strongest promoters under cellobiose conditions were applied to fine-tune expression of the heterologous cellobiose-utilizing pathway. Of the changes in these 19 transcription factors, only overexpression of SUT1 or deletion of HAP4 consistently improved cellobiose fermentation. SUT1 overexpression and HAP4 deletion were not synergistic, suggesting that SUT1 and HAP4 may regulate overlapping genes important for improved cellobiose fermentation. Transcription factor modulation coupled with rational tuning of the cellobiose consumption pathway significantly improved cellobiose fermentation.ConclusionsWe used systems-level input to reveal the regulatory mechanisms underlying suboptimal metabolism of the non-glucose sugar cellobiose. By identifying key transcription factors that cause suboptimal cellobiose fermentation in engineered S. cerevisiae, and by fine-tuning the expression of a heterologous cellobiose consumption pathway, we were able to greatly improve cellobiose fermentation by engineered S. cerevisiae. Our results demonstrate a powerful strategy for applying systems biology methods to rapidly identify metabolic engineering targets and overcome bottlenecks in performance of engineered strains.


Biotechnology for Biofuels | 2014

Overcoming inefficient cellobiose fermentation by cellobiose phosphorylase in the presence of xylose

Kulika Chomvong; Vesna Kordić; Xin Li; Stefan Bauer; Abigail E. Gillespie; Suk Jin Ha; Eun Joong Oh; Jonathan M. Galazka; Yong Su Jin; Jamie H. D. Cate

BackgroundCellobiose and xylose co-fermentation holds promise for efficiently producing biofuels from plant biomass. Cellobiose phosphorylase (CBP), an intracellular enzyme generally found in anaerobic bacteria, cleaves cellobiose to glucose and glucose-1-phosphate, providing energetic advantages under the anaerobic conditions required for large-scale biofuel production. However, the efficiency of CBP to cleave cellobiose in the presence of xylose is unknown. This study investigated the effect of xylose on anaerobic CBP-mediated cellobiose fermentation by Saccharomyces cerevisiae.ResultsYeast capable of fermenting cellobiose by the CBP pathway consumed cellobiose and produced ethanol at rates 61% and 42% slower, respectively, in the presence of xylose than in its absence. The system generated significant amounts of the byproduct 4-O-β-d-glucopyranosyl-d-xylose (GX), produced by CBP from glucose-1-phosphate and xylose. In vitro competition assays identified xylose as a mixed-inhibitor for cellobiose phosphorylase activity. The negative effects of xylose were effectively relieved by efficient cellobiose and xylose co-utilization. GX was also shown to be a substrate for cleavage by an intracellular β-glucosidase.ConclusionsXylose exerted negative impacts on CBP-mediated cellobiose fermentation by acting as a substrate for GX byproduct formation and a mixed-inhibitor for cellobiose phosphorylase activity. Future efforts will require efficient xylose utilization, GX cleavage by a β-glucosidase, and/or a CBP with improved substrate specificity to overcome the negative impacts of xylose on CBP in cellobiose and xylose co-fermentation.


Journal of Biotechnology | 2013

Investigation of the functional role of aldose 1-epimerase in engineered cellobiose utilization

Sijin Li; Suk Jin Ha; Heejin Kim; Jonathan M. Galazka; Jamie H. D. Cate; Yong Su Jin; Huimin Zhao

Functional expression of a cellodextrin transporter and an intracellular β-glucosidase from Neurospora crassa in Saccharomyces cerevisiae enables simultaneous co-fermentation of cellobiose and non-glucose sugars such as xylose. Here we investigate the functional role of aldose 1-epimerase (AEP) in engineered cellobiose utilization. One AEP (Gal10) and two putative AEPs (Yhr210c and Ynr071c sharing 50.6% and 51.0% amino acid identity with Gal10, respectively) were selected. Deletion of GAL10 led to complete loss of both AEP activity and cell growth on cellobiose, while GAL10 complementation restored the AEP activity and cell growth. In addition, deletion of YHR210C or YNR071C resulted in improved cellobiose utilization. These results suggest that the intracellular mutarotation of β-glucose to α-glucose might be a rate controlling step and Gal10 play a crucial role in cellobiose fermentation by engineered S. cerevisiae.

Collaboration


Dive into the Jonathan M. Galazka's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yong-Su Jin

University of California

View shared research outputs
Top Co-Authors

Avatar

Soo Rin Kim

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Huimin Zhao

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaomin Yang

University of California

View shared research outputs
Top Co-Authors

Avatar

Chaoguang Tian

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge