Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan M. Gregory is active.

Publication


Featured researches published by Jonathan M. Gregory.


Journal of Climate | 2006

Investigating the Causes of the Response of the Thermohaline Circulation to Past and Future Climate Changes

Ronald J. Stouffer; Jieyi Yin; Jonathan M. Gregory; Keith W. Dixon; Michael J. Spelman; William J. Hurlin; Andrew J. Weaver; Michael Eby; Gregory M. Flato; Hiroyasu Hasumi; Aixue Hu; Johann H. Jungclaus; Igor V. Kamenkovich; Anders Levermann; Marisa Montoya; S. Murakami; S. Nawrath; Akira Oka; W. R. Peltier; D. Y. Robitaille; Andrei P. Sokolov; Guido Vettoretti; S. L. Weber

The Atlantic thermohaline circulation (THC) is an important part of the earth’s climate system. Previous research has shown large uncertainties in simulating future changes in this critical system. The simulated THC response to idealized freshwater perturbations and the associated climate changes have been intercompared as an activity of World Climate Research Program (WCRP) Coupled Model Intercomparison Project/Paleo-Modeling Intercomparison Project (CMIP/PMIP) committees. This intercomparison among models ranging from the earth system models of intermediate complexity (EMICs) to the fully coupled atmosphere–ocean general circulation models (AOGCMs) seeks to document and improve understanding of the causes of the wide variations in the modeled THC response. The robustness of particular simulation features has been evaluated across the model results. In response to 0.1-S v( 1 Sv 10 6 m 3 s 1 ) freshwater input in the northern North Atlantic, the multimodel ensemble mean THC weakens by 30% after 100 yr. All models simulate some weakening of the THC, but no model simulates a complete shutdown of the THC. The multimodel ensemble indicates that the surface air temperature could present a complex anomaly pattern with cooling south of Greenland and warming over the Barents and Nordic Seas. The Atlantic ITCZ tends to shift southward. In response to 1.0-Sv freshwater input, the THC switches off rapidly in all model simulations. A large cooling occurs over the North Atlantic. The annual mean Atlantic ITCZ moves into the Southern Hemisphere. Models disagree in terms of the reversibility of the THC after its shutdown. In general, the EMICs and AOGCMs obtain similar THC responses and climate changes with more pronounced and sharper patterns in the AOGCMs.


Weather | 2002

Changes in sea level

Jonathan M. Gregory; John A. Church

This chapter assesses the current state of knowledge of the rate of change of global-averaged and regional sea-level in relation to climate change. We focus on the 20th and 21st centuries.However, because of the slow response to past conditions of the oceans and ice sheets and the consequent land movements, we consider changes in sea level prior to the historical record, andwe also look over a thousand years into the future.Past changes in sea levelFrom recent analyses, our conclusions are as follows:since the Last Glacial Maximum about 20 000 years ago, sea level has risen by over 120 m at locations far from present and former ice sheets, as a result of loss of mass from these ice sheets. There was a rapid rise between 15 000 and 6000 years ago at an average rate of 10 mm/yr.based on geological data, global average sea level may have risen at an average rate of 0.5 mm/yr over the last 6000 years and at an average rate of 0.1 to 0.2 mm/yr over the last 3000 years.vertical land movements are still occurring today as a result of these large transfers of mass from the ice sheets to the ocean.during the last 6000 years, global average sea-level variations on the time scales of a few hundred years and longer are likely to have been less than 0.3 to 0.5 m.based on tide gauge data, the rate of global average sea-level rise during the 20th century is in the range 1.0 to 2.0 mm/yr, with a central value of 1.5 mm/yr (as with other ranges of uncertainty, it is not implied that the central value is the best estimate).based on the few very long tide-gauge records, the average rate of sea-level rise has been larger during the 20th century than the 19th century.no significant acceleration in the rate of sea-level rise during the 20th century has been detected.there is decadal variability in extreme sea levels but no evidence of widespread increases in extremes other than that associated with a change in the mean.Factors affecting present day sea level changeGlobal average sea level is affected by many factors. Our assessment of the most important is as follows.Ocean thermal expansion leads to an increase in ocean volume at constant mass. Observational estimates of about 1 mm/yr over recent decades are similar to values of 0.7 to 1.1 mm/yr obtained from Atmosphere-Ocean General Circulation Models (AOGCMs) over a comparable period. Averaged over the 20th century, AOGCM simulations result in rates of thermal expansion of 0.3 to 0.7 mm/yr.The mass of the ocean, and thus sea level, changes as water is exchanged with glaciers and ice caps. Observational and modelling studies of glaciers and ice-caps indicate a contribution to sea-level rise of 0.2 to 0.4 mm/yr averaged over the 20th century.Climate changes during the 20th century are estimated from modelling studies to have led to contributions of between Ð0.2 and 0.0 mm/yr from Antarctica (the results of increasing precipitation) and 0.0 to 0.1 mm/yr from Greenland (from changes in both precipitation and runoff).Greenland and Antarctica have contributed 0.0 to 0.5 mm/yr over the 20th century as a result of long term adjustment to past climate changes.Changes in terrestrial storage of water over the period 1910 to 1990 are estimated to have contributed from Ð1.1 to +0.4 mm/yr of sea-level rise.The sum of these components indicates a rate of eustatic sea-level rise (corresponding to a change in ocean volume) from 1910 to 1990 ranging from Ð0.8 mm/yr to 2.2 mm/yr, with a central value of 0.7 mm/yr. The upper bound is close to the observational upper bound (2.0 mm/yr), but the central value bound is less than the observational lower bound (1.0 mm/yr), i.e. the sum of components is biased low compared to the observational estimates. The sum of components indicates an acceleration of only 0.2 mm/yr/century, with a range from Ð1.1 to +0.7 mm/yr/century, consistent with observational finding of no acceleration in sea-level rise during the 20th century. The estimated rate of sea-level rise from anthropogenic climate change from 1910 to 1990 (from modelling studies of thermal expansion, glaciers and ice-sheets) ranges from 0.3 to 0.8 mm/yr. It is very likely that 20th century warming has contributed significantly to the observed sea level rise, through thermal expansion of sea water and widespread loss of land ice.Projected sea-level changes from 1990 to 2100Projections of components contributing to sea-level change from 1990 to 2100 (this period is chosen for consistency with the IPCC Second Assessment Report), using a range of AOGCMs following the IS92a scenario (including the direct effect of sulphate aerosol emissions) give:thermal expansion of 0.11 to 0.43 m, accelerating through the 21st century.a glacier contribution of 0.01 to 0.23 m.a Greenland contribution of -0.02 to 0.09 m.an Antarctic contribution of -0.17 to 0.02 m.Including thawing of permafrost, deposition of sediment, and the ongoing contributions from ice sheets as a result of climate change since the Last Glacial Maximum, we obtain a range of global-average sea-level rise from 0.11 to 0.77 m. This range reflects systematic uncertainties in modelling.For the 35 SRES scenarios, we project a sea-level rise of 0.09 to 0.88 m for 1990 to 2100, with a central value of 0.48 m. The central value gives an average rate of 2.2 to 4.4 times the rate over the 20th century. If terrestrial storage continued at its present rates, the projections could be changed by -0.21 to 0.11 m. For an average AOGCM, the SRES scenarios give results which differ by 0.02 m or less for the first half of the 21st century. By 2100, they vary over a range amounting to about 50% of the central value. Beyond the 21st century, sea level rise will depend strongly on the emission scenario.The West Antarctic Ice Sheet (WAIS) has attracted special attention because it contains enough ice to raise sea level by 6 m and because of suggestions that instabilities associated with its being grounded below sea level may result in rapid ice discharge when the surrounding ice shelves are weakened. The range of projections given above makes no allowance for ice-dynamic instability of the WAIS. It is now widely agreed that major loss of grounded ice and accelerated sea-level rise are very unlikely during the 21st century.Our confidence in the regional distribution of sea level change from AOGCMs is low because there is little similarity between models. However, models agree on the qualitative conclusion that the range of regional variation is substantial compared with the global average sea-level rise. Nearly all models project greater than average rise in the Arctic Ocean and less than average rise in the Southern Ocean.Land movements, both isostatic and tectonic, will continue through the 21st century at rates which are unaffected by climate change. It can be expected that by 2100 many regions currently experiencing relative sea-level fall will instead have a rising relative sea level.Extreme high water levels will occur with increasing frequency (i.e. with reducing return period) as a result of mean sea-level rise. Their frequency may be further increased if storms become more frequent or severe as a result of climate change.Longer term changesIf greenhouse gas concentrations were stabilised, sea level would nonetheless continue to rise for hundreds of years. After 500 years, sea-level rise from thermal expansion may have reached only half of its eventual level, which models suggest may lie within ranges of 0.5 to 2.0 m and 1 to 4 m for CO2 levels twice and four times pre-industrial, respectively.Glacier retreat will continue and the loss of a substantial fraction of the total glacier mass is likely. Areas that are currently marginally glaciated are most likely to become ice-free.Ice sheets will continue to react to climate change during the next several thousand years even if the climate is stabilised. Models project that a local annual-average warming of larger than 3°C sustained for millennia would lead to virtually a complete melting of the Greenland ice sheet. For a warming over Greenland of 5.5°C, consistent with mid-range stabilisation scenarios, theGreenland ice sheet contributes about 3 m in 1000 years. For a warming of 8°C, the contribution is about 6 m, the ice sheet being largely eliminated. For smaller warmings, the decay of the ice sheet would be substantially slower.Current ice dynamic models project that the WAIS will contribute no more than 3 mm/yr to sea-level rise over the next thousand years, even if significant changes were to occur in the ice shelves. However, we note that its dynamics are still inadequately understood to make firm projections, especially on the longer time scales.Apart from the possibility of an internal ice dynamic instability, surface melting will affect the long-term viability of the Antarctic ice sheet. For warmings of more than 10°C, simple runoff models predict that an ablation zone would develop on the ice sheet surface. Irreversible disintegration of the WAIS would result because the WAIS cannot retreat to higher ground once its margins are subjected to surface melting and begin to recede. Such a disintegration would take at least a few millennia. Thresholds for total disintegration of the East Antarctic ice sheet by surface melting involve warmings above 20*C, a situation that has not occurred for at least 15 million years and which is far more than predicted by any scenario of climate change currently under consideration.


Geophysical Research Letters | 2005

A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration

Jonathan M. Gregory; Keith W. Dixon; Ronald J. Stouffer; Andrew J. Weaver; E. Driesschaert; Michael Eby; Thierry Fichefet; Hiroyasu Hasumi; Aixue Hu; Johann H. Jungclaus; Igor V. Kamenkovich; Anders Levermann; Marisa Montoya; S. Murakami; S. Nawrath; Akira Oka; Andrei P. Sokolov; R. B. Thorpe

[ 1] As part of the Coupled Model Intercomparison Project, integrations with a common design have been undertaken with eleven different climate models to compare the response of the Atlantic thermohaline circulation ( THC) to time-dependent climate change caused by increasing atmospheric CO2 concentration. Over 140 years, during which the CO2 concentration quadruples, the circulation strength declines gradually in all models, by between 10 and 50%. No model shows a rapid or complete collapse, despite the fairly rapid increase and high final concentration of CO2. The models having the strongest overturning in the control climate tend to show the largest THC reductions. In all models, the THC weakening is caused more by changes in surface heat flux than by changes in surface water flux. No model shows a cooling anywhere, because the greenhouse warming is dominant.


Geophysical Research Letters | 2011

Revisiting the Earth's sea-level and energy budgets from 1961 to 2008

John A. Church; Neil J. White; Leonard F. Konikow; Catia M. Domingues; J. Graham Cogley; Eric Rignot; Jonathan M. Gregory; Michiel R. van den Broeke; Andrew J. Monaghan; I. Velicogna

We review the sea-level and energy budgets together from 1961, using recent and updated estimates of all terms. From 1972 to 2008, the observed sea-level rise (1.8 ± 0.2 mm yr−1 from tide gauges alone and 2.1 ± 0.2 mm yr−1 from a combination of tide gauges and altimeter observations) agrees well with the sum of contributions (1.8 ± 0.4 mm yr−1) in magnitude and with both having similar increases in the rate of rise during the period. The largest contributions come from ocean thermal expansion (0.8 mm yr−1) and the melting of glaciers and ice caps (0.7 mm yr−1), with Greenland and Antarctica contributing about 0.4 mm yr−1. The cryospheric contributions increase through the period (particularly in the 1990s) but the thermosteric contribution increases less rapidly. We include an improved estimate of aquifer depletion (0.3 mm yr−1), partially offsetting the retention of water in dams and giving a total terrestrial storage contribution of −0.1 mm yr−1. Ocean warming (90% of the total of the Earths energy increase) continues through to the end of the record, in agreement with continued greenhouse gas forcing. The aerosol forcing, inferred as a residual in the atmospheric energy balance, is estimated as −0.8 ± 0.4 W m−2 for the 1980s and early 1990s. It increases in the late 1990s, as is required for consistency with little surface warming over the last decade. This increase is likely at least partially related to substantial increases in aerosol emissions from developing nations and moderate volcanic activity.


Journal of Climate | 2006

The New Hadley Centre Climate Model (HadGEM1): Evaluation of Coupled Simulations

T. C. Johns; C. F. Durman; Helene T. Banks; Malcolm J. Roberts; A. J. McLaren; Jeff Ridley; C. A. Senior; Keith D. Williams; Andy Jones; Graham J. Rickard; S. Cusack; William Ingram; M. Crucifix; David M. H. Sexton; Manoj Joshi; Buwen Dong; Hilary Spencer; R. S. R. Hill; Jonathan M. Gregory; A. B. Keen; Anne Pardaens; Jason Lowe; Alejandro Bodas-Salcedo; S. Stark; Y. Searl

Abstract A new coupled general circulation climate model developed at the Met Offices Hadley Centre is presented, and aspects of its performance in climate simulations run for the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4) documented with reference to previous models. The Hadley Centre Global Environmental Model version 1 (HadGEM1) is built around a new atmospheric dynamical core; uses higher resolution than the previous Hadley Centre model, HadCM3; and contains several improvements in its formulation including interactive atmospheric aerosols (sulphate, black carbon, biomass burning, and sea salt) plus their direct and indirect effects. The ocean component also has higher resolution and incorporates a sea ice component more advanced than HadCM3 in terms of both dynamics and thermodynamics. HadGEM1 thus permits experiments including some interactive processes not feasible with HadCM3. The simulation of present-day mean climate in HadGEM1 is significantly better overall ...


Nature | 1999

Changing spatial structure of the thermohaline circulation in response to atmospheric CO2 forcing in a climate model

Richard A. Wood; Ann B. Keen; John Mitchell; Jonathan M. Gregory

The heat transported northwards by the North Atlantic thermohaline circulation warms the climate of western Europe. Previous model studies have suggested that the circulation is sensitive to increases in atmospheric greenhouse-gas concentrations, but such models have been criticised for the use of unphysical ‘flux adjustments’ (artificial corrections that keep the model from drifting to unrealistic states), and for their inability to simulate deep-water formation both north and south of the Greenland–Iceland–Scotland ridge, as seen in observations,. Here we present simulations of todays thermohaline circulation using a coupled ocean–atmosphere general circulation model without flux adjustments. These simulations compare well with the observed thermohaline circulation, including the formation of deep water on each side of the Greenland–Iceland–Scotland ridge. The model responds to forcing with increasing atmospheric greenhouse-gas concentrations by a collapse of the circulation and convection in the Labrador Sea, while the deep-water formation north of the ridge remains stable. These changes are similar intwo simulations with different rates of increase of CO2 concentrations. The effects of increasing atmospheric greenhouse-gas concentrations that we simulate are potentially observable, suggesting that it is possible to set up an oceanic monitoring system for the detection of anthropogenic influence on ocean circulation.


Journal of Climate | 2002

An Observationally Based Estimate of the Climate Sensitivity

Jonathan M. Gregory; Ronald J. Stouffer; S. C. B. Raper; Peter A. Stott; Nick Rayner

Abstract A probability distribution for values of the effective climate sensitivity, with a lower bound of 1.6 K (5th percentile), is obtained on the basis of the increase in ocean heat content in recent decades from analyses of observed interior-ocean temperature changes, surface temperature changes measured since 1860, and estimates of anthropogenic and natural radiative forcing of the climate system. Radiative forcing is the greatest source of uncertainty in the calculation; the result also depends somewhat on the rate of ocean heat uptake in the late nineteenth century, for which an assumption is needed as there is no observational estimate. Because the method does not use the climate sensitivity simulated by a general circulation model, it provides an independent observationally based constraint on this important parameter of the climate system.


Journal of Climate | 1997

Summer Drought in Northern Midlatitudes in a Time-Dependent CO2 Climate Experiment

Jonathan M. Gregory; J. F. B. Mitchell; A. J. Brady

Abstract A time-dependent climate-change experiment with a coupled ocean–atmosphere general circulation model has been used to study changes in the occurrence of drought in summer in southern Europe and central North America. In both regions, precipitation and soil moisture are reduced in a climate of greater atmospheric carbon dioxide. A detailed investigation of the hydrology of the model shows that the drying of the soil comes about through an increase in evaporation in winter and spring, caused by higher temperatures and reduced snow cover, and a decrease in the net input of water in summer. Evaporation is reduced in summer because of the drier soil, but the reduction in precipitation is larger. Three extreme statistics are used to define drought, namely the frequency of low summer precipitation, the occurrence of long dry spells, and the probability of dry soil. The last of these is arguably of the greatest practical importance, but since it is based on soil moisture, of which there are very few obse...


Journal of Climate | 2005

Elimination of the greenland Ice sheet in a high CO2 climate

Jeff Ridley; Philippe Huybrechts; Jonathan M. Gregory; Jason Lowe

Projections of future global sea level depend on reliable estimates of changes in the size of polar ice sheets. Calculating this directly from global general circulation models (GCMs) is unreliable because the coarse resolution of 100 km or more is unable to capture narrow ablation zones, and ice dynamics is not usually taken into account in GCMs. To overcome these problems a high-resolution (20 km) dynamic ice sheet model has been coupled to the third Hadley Centre Coupled Ocean–Atmosphere GCM (HadCM3). A novel feature is the use of two-way coupling, so that climate changes in the GCM drive ice mass changes in the ice sheet model that, in turn, can alter the future climate through changes in orography, surface albedo, and freshwater input to the model ocean. At the start of the main experiment the atmospheric carbon dioxide concentration was increased to 4 times the preindustrial level and held constant for 3000 yr. By the end of this period the Greenland ice sheet is almost completely ablated and has made a direct contribution of approximatel y7mt oglobal average sea level, causing a peak rate of sea level rise of 5 mm yr 1 early in the simulation. The effect of ice sheet depletion on global and regional climate has been examined and it was found that apart from the sea level rise, the long-term effect on global climate is small. However, there are some significant regional climate changes that appear to have reduced the rate at which the ice sheet ablates.


Journal of Climate | 2002

The Role of Climate Sensitivity and Ocean Heat Uptake on AOGCM Transient Temperature Response

S. C. B. Raper; Jonathan M. Gregory; Ronald J. Stouffer

The role of climate sensitivity and ocean heat uptake in determining the range of climate model response is investigated in the second phase of the Coupled Model Intercomparison Project (CMIP2) AOGCM results. The fraction of equilibrium warming that is realized at any one time is less in those models with higher climate sensitivity, leading to a reduction in the temperature response range at the time of CO 2 doubling [transient climate response (TCR) range]. The range is reduced by a further 15% because of an apparent relationship between climate sensitivity and the efficiency of ocean heat uptake. Some possible physical causes for this relationship are suggested.

Collaboration


Dive into the Jonathan M. Gregory's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge